Applying refutation tests to the Lalonde and IHDP datasets
Import the Dependencies
[3]:
import dowhy
from dowhy import CausalModel
import pandas as pd
import numpy as np
Loading the Dataset
Infant Health and Development Program Dataset (IHDP)
The measurements used are on the child—birth weight, head circumference, weeks bornpreterm, birth order, first born, neonatal health index (see Scott and Bauer 1989), sex, twinstatus—as well as behaviors engaged in during the pregnancy—smoked cigarettes, drankalcohol, took drugs—and measurements on the mother at the time she gave birth—age,marital status, educational attainment (did not graduate from high school, graduated fromhigh school, attended some college but did not graduate, graduated from college), whethershe worked during pregnancy, whether she received prenatal care—and the site (8 total) inwhich the family resided at the start of the intervention. There are 6 continuous covariatesand 19 binary covariates.
Reference
Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics, 20(1), 217-240. https://doi.org/10.1198/jcgs.2010.08162
[4]:
data = pd.read_csv("https://raw.githubusercontent.com/AMLab-Amsterdam/CEVAE/master/datasets/IHDP/csv/ihdp_npci_1.csv", header = None)
col = ["treatment", "y_factual", "y_cfactual", "mu0", "mu1" ,]
for i in range(1,26):
col.append("x"+str(i))
data.columns = col
data = data.astype({"treatment":'bool'}, copy=False)
data.head()
[4]:
treatment | y_factual | y_cfactual | mu0 | mu1 | x1 | x2 | x3 | x4 | x5 | ... | x16 | x17 | x18 | x19 | x20 | x21 | x22 | x23 | x24 | x25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | True | 5.599916 | 4.318780 | 3.268256 | 6.854457 | -0.528603 | -0.343455 | 1.128554 | 0.161703 | -0.316603 | ... | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | False | 6.875856 | 7.856495 | 6.636059 | 7.562718 | -1.736945 | -1.802002 | 0.383828 | 2.244320 | -0.629189 | ... | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | False | 2.996273 | 6.633952 | 1.570536 | 6.121617 | -0.807451 | -0.202946 | -0.360898 | -0.879606 | 0.808706 | ... | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | False | 1.366206 | 5.697239 | 1.244738 | 5.889125 | 0.390083 | 0.596582 | -1.850350 | -0.879606 | -0.004017 | ... | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | False | 1.963538 | 6.202582 | 1.685048 | 6.191994 | -1.045229 | -0.602710 | 0.011465 | 0.161703 | 0.683672 | ... | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
5 rows × 30 columns
Lalonde Dataset
A data frame with 445 observations on the following 12 variables.
age: age in years.
educ: years of schooling.
black: indicator variable for blacks.
hisp: indicator variable for Hispanics.
married: indicator variable for martial status.
nodegr: indicator variable for high school diploma.
re74: real earnings in 1974.
re75: real earnings in 1975.
re78: real earnings in 1978.
u74: indicator variable for earnings in 1974 being zero.
u75: indicator variable for earnings in 1975 being zero.
treat: an indicator variable for treatment status.
References
Dehejia, Rajeev and Sadek Wahba. 1999.``Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs.’’ Journal of the American Statistical Association 94 (448): 1053-1062.
LaLonde, Robert. 1986. ``Evaluating the Econometric Evaluations of Training Programs.’’ American Economic Review 76:604-620.
[2]:
from rpy2.robjects import r as R
from os.path import expanduser
home = expanduser("~")
%reload_ext rpy2.ipython
# %R install.packages("Matching")
%R library(Matching)
R[write to console]: Loading required package: MASS
R[write to console]: ##
## Matching (Version 4.9-7, Build Date: 2020-02-05)
## See http://sekhon.berkeley.edu/matching for additional documentation.
## Please cite software as:
## Jasjeet S. Sekhon. 2011. ``Multivariate and Propensity Score Matching
## Software with Automated Balance Optimization: The Matching package for R.''
## Journal of Statistical Software, 42(7): 1-52.
##
[2]:
array(['Matching', 'MASS', 'tools', 'stats', 'graphics', 'grDevices',
'utils', 'datasets', 'methods', 'base'], dtype='<U9')
[7]:
%R data(lalonde)
%R -o lalonde
lalonde = lalonde.astype({'treat':'bool'}, copy=False)
lalonde.head()
[7]:
age | educ | black | hisp | married | nodegr | re74 | re75 | re78 | u74 | u75 | treat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 37 | 11 | 1 | 0 | 1 | 1 | 0.0 | 0.0 | 9930.05 | 1 | 1 | True |
2 | 22 | 9 | 0 | 1 | 0 | 1 | 0.0 | 0.0 | 3595.89 | 1 | 1 | True |
3 | 30 | 12 | 1 | 0 | 0 | 0 | 0.0 | 0.0 | 24909.50 | 1 | 1 | True |
4 | 27 | 11 | 1 | 0 | 0 | 1 | 0.0 | 0.0 | 7506.15 | 1 | 1 | True |
5 | 33 | 8 | 1 | 0 | 0 | 1 | 0.0 | 0.0 | 289.79 | 1 | 1 | True |
Step 1: Building the model
IHDP
[12]:
# Create a causal model from the data and given common causes
common_causes = []
for i in range(1, 26):
common_causes += ["x"+str(i)]
ihdp_model = CausalModel(
data=data,
treatment='treatment',
outcome='y_factual',
common_causes=common_causes
)
ihdp_model
WARNING:dowhy.causal_model:Causal Graph not provided. DoWhy will construct a graph based on data inputs.
INFO:dowhy.causal_graph:If this is observed data (not from a randomized experiment), there might always be missing confounders. Adding a node named "Unobserved Confounders" to reflect this.
INFO:dowhy.causal_model:Model to find the causal effect of treatment ['treatment'] on outcome ['y_factual']
[12]:
<dowhy.causal_model.CausalModel at 0x7fafe92321d0>
Lalonde
[15]:
lalonde_model = CausalModel(
data=lalonde,
treatment='treat',
outcome='re78',
common_causes='nodegr+black+hisp+age+educ+married'.split('+')
)
lalonde_model
WARNING:dowhy.causal_model:Causal Graph not provided. DoWhy will construct a graph based on data inputs.
INFO:dowhy.causal_graph:If this is observed data (not from a randomized experiment), there might always be missing confounders. Adding a node named "Unobserved Confounders" to reflect this.
INFO:dowhy.causal_model:Model to find the causal effect of treatment ['treat'] on outcome ['re78']
[15]:
<dowhy.causal_model.CausalModel at 0x7fafe9170610>
Step 2: Identification
IHDP
[25]:
#Identify the causal effect for the ihdp dataset
ihdp_identified_estimand = ihdp_model.identify_effect()
INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['x25', 'x12', 'U', 'x4', 'x14', 'x5', 'x17', 'x18', 'x16', 'x9', 'x6', 'x1', 'x15', 'x19', 'x20', 'x10', 'x23', 'x21', 'x2', 'x22', 'x13', 'x11', 'x24', 'x8', 'x3', 'x7']
WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.
WARN: Do you want to continue by ignoring any unobserved confounders? (use proceed_when_unidentifiable=True to disable this prompt) [y/n] y
INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]
Lalonde
[26]:
#Identify the causal effect for the lalonde dataset
lalonde_identified_estimand = lalonde_model.identify_effect()
INFO:dowhy.causal_identifier:Common causes of treatment and outcome:['hisp', 'black', 'U', 'age', 'married', 'educ', 'nodegr']
WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.
WARN: Do you want to continue by ignoring any unobserved confounders? (use proceed_when_unidentifiable=True to disable this prompt) [y/n] y
INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:[]
Step 3: Estimation (using propensity score weighting)
IHDP
[32]:
ihdp_estimate = ihdp_model.estimate_effect(
ihdp_identified_estimand,
method_name="backdoor.propensity_score_weighting"
)
print("The Causal Estimate is " + str(ihdp_estimate.value))
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y_factual~treatment+x25+x12+x4+x14+x5+x17+x18+x16+x9+x6+x1+x15+x19+x20+x10+x23+x21+x2+x22+x13+x11+x24+x8+x3+x7
The Causal Estimate is 3.409737824404964
/home/tanmay/model_env/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
Lalonde
[31]:
lalonde_estimate = lalonde_model.estimate_effect(
lalonde_identified_estimand,
method_name="backdoor.propensity_score_weighting"
)
print("The Causal Estimate is " + str(lalonde_estimate.value))
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: re78~treat+hisp+black+age+married+educ+nodegr
The Causal Estimate is 1614.1203743033784
/home/tanmay/model_env/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
Step 4: Refutation
IHDP
Add Random Common Cause
[33]:
ihdp_refute_random_common_cause = ihdp_model.refute_estimate(
ihdp_identified_estimand,
ihdp_estimate,
method_name="random_common_cause"
)
print(ihdp_refute_random_common_cause)
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y_factual~treatment+x25+x12+x4+x14+x5+x17+x18+x16+x9+x6+x1+x15+x19+x20+x10+x23+x21+x2+x22+x13+x11+x24+x8+x3+x7+w_random
Refute: Add a Random Common Cause
Estimated effect:(3.409737824404964,)
New effect:(3.4082516978396793,)
/home/tanmay/model_env/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
Replace Treatment with Placebo
[35]:
ihdp_refute_placebo_treatment = ihdp_model.refute_estimate(
ihdp_identified_estimand,
ihdp_estimate,
method_name="placebo_treatment_refuter",
placebo_type="permute"
)
print(ihdp_refute_placebo_treatment)
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y_factual~placebo+x25+x12+x4+x14+x5+x17+x18+x16+x9+x6+x1+x15+x19+x20+x10+x23+x21+x2+x22+x13+x11+x24+x8+x3+x7
Refute: Use a Placebo Treatment
Estimated effect:(3.409737824404964,)
New effect:(-0.030843695817419192,)
/home/tanmay/model_env/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
Remove Random Subset of Data
[36]:
ihdp_refute_random_subset = ihdp_model.refute_estimate(
ihdp_identified_estimand,
ihdp_estimate,
method_name="data_subset_refuter",
subset_fraction=0.8
)
print(ihdp_refute_random_subset)
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y_factual~treatment+x25+x12+x4+x14+x5+x17+x18+x16+x9+x6+x1+x15+x19+x20+x10+x23+x21+x2+x22+x13+x11+x24+x8+x3+x7
Refute: Use a subset of data
Estimated effect:(3.409737824404964,)
New effect:(3.490166414737983,)
/home/tanmay/model_env/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
Lalonde
Add Random Common Cause
[38]:
lalonde_refute_random_common_cause = lalonde_model.refute_estimate(
lalonde_identified_estimand,
lalonde_estimate,
method_name="random_common_cause"
)
print(lalonde_refute_random_common_cause)
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: re78~treat+hisp+black+age+married+educ+nodegr+w_random
Refute: Add a Random Common Cause
Estimated effect:(1614.1203743033784,)
New effect:(1623.995451276467,)
/home/tanmay/model_env/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
Replace Treatment with Placebo
[39]:
lalonde_refute_placebo_treatment = lalonde_model.refute_estimate(
lalonde_identified_estimand,
lalonde_estimate,
method_name="placebo_treatment_refuter",
placebo_type="permute"
)
print(lalonde_refute_placebo_treatment)
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: re78~placebo+hisp+black+age+married+educ+nodegr
Refute: Use a Placebo Treatment
Estimated effect:(1614.1203743033784,)
New effect:(913.2564092536604,)
/home/tanmay/model_env/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
Remove Random Subset of Data
[40]:
lalonde_refute_random_subset = lalonde_model.refute_estimate(
lalonde_identified_estimand,
lalonde_estimate,
method_name="data_subset_refuter",
subset_fraction=0.9
)
print(lalonde_refute_random_subset)
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: re78~treat+hisp+black+age+married+educ+nodegr
Refute: Use a subset of data
Estimated effect:(1614.1203743033784,)
New effect:(1425.6467153243575,)
/home/tanmay/model_env/lib/python3.7/site-packages/sklearn/utils/validation.py:760: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)