Source code for dowhy.causal_refuters.bootstrap_refuter

from dowhy.causal_refuter import CausalRefuter, CausalRefutation
from dowhy.causal_estimator import CausalEstimator
import numpy as np
import random
from sklearn.utils import resample
import logging

[docs]class BootstrapRefuter(CausalRefuter): """ Refute an estimate by running it on a random sample of the data containing measurement error in the confounders. This allows us to find the ability of the estimator to find the effect of the treatment on the outcome. It supports additional parameters that can be specified in the refute_estimate() method. :param num_simulations: The number of simulations to be run, ``CausalRefuter.DEFAULT_NUM_SIMULATIONS`` by default :type num_simulations: int, optional :param sample_size: The size of each bootstrap sample and is the size of the original data by default :type sample_size: int, optional :param required_variables: The list of variables to be used as the input for ``y~f(W)`` This is ``True`` by default, which in turn selects all variables leaving the treatment and the outcome :type required_variables: int, list, bool, optional 1. An integer argument refers to how many variables will be used for estimating the value of the outcome 2. A list explicitly refers to which variables will be used to estimate the outcome Furthermore, it gives the ability to explictly select or deselect the covariates present in the estimation of the outcome. This is done by either adding or explicitly removing variables from the list as shown below: .. note:: * We need to pass required_variables = ``[W0,W1]`` if we want ``W0`` and ``W1``. * We need to pass required_variables = ``[-W0,-W1]`` if we want all variables excluding ``W0`` and ``W1``. 3. If the value is True, we wish to include all variables to estimate the value of the outcome. .. warning:: A ``False`` value is ``INVALID`` and will result in an ``error``. :param noise: The standard deviation of the noise to be added to the data and is ``BootstrapRefuter.DEFAULT_STD_DEV`` by default :type noise: float, optional :param probability_of_change: It specifies the probability with which we change the data for a boolean or categorical variable It is ``noise`` by default, only if the value of ``noise`` is less than 1. :type probability_of_change: float, optional :param random_state: The seed value to be added if we wish to repeat the same random behavior. For this purpose, we repeat the same seed in the psuedo-random generator. :type random_state: int, RandomState, optional """ DEFAULT_STD_DEV = 0.1 DEFAULT_SUCCESS_PROBABILITY = 0.5 DEFAULT_NUMBER_OF_TRIALS = 1 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._num_simulations = kwargs.pop("num_simulations", CausalRefuter.DEFAULT_NUM_SIMULATIONS ) self._sample_size = kwargs.pop("sample_size", len(self._data)) required_variables = kwargs.pop("required_variables", True) self._noise = kwargs.pop("noise", BootstrapRefuter.DEFAULT_STD_DEV ) self._probability_of_change = kwargs.pop("probability_of_change", None) self._random_state = kwargs.pop("random_state", None) self.logger = logging.getLogger(__name__) self._chosen_variables = self.choose_variables(required_variables) if self._chosen_variables is None: self.logger.info("INFO: There are no chosen variables") else: self.logger.info("INFO: The chosen variables are: " + ",".join(self._chosen_variables)) if self._probability_of_change is None: if self._noise > 1: self.logger.error("Error in using noise:{} for Binary Flip. The value is greater than 1".format(self._noise)) raise ValueError("The value for Binary Flip cannot be greater than 1") else: self._probability_of_change = self._noise elif self._probability_of_change > 1: self.logger.error("The probability of flip is: {}, However, this value cannot be greater than 1".format(self._probability_of_change)) raise ValueError("Probability of Flip cannot be greater than 1")
[docs] def refute_estimate(self, *args, **kwargs): if self._sample_size > len(self._data): self.logger.warning("The sample size is larger than the population size") sample_estimates = np.zeros(self._num_simulations) self.logger.info("Refutation over {} simulated datasets of size {} each" .format(self._num_simulations ,self._sample_size ) ) for index in range(self._num_simulations): if self._random_state is None: new_data = resample(self._data, n_samples=self._sample_size ) else: new_data = resample(self._data, n_samples=self._sample_size, random_state=self._random_state ) if self._chosen_variables is not None: for variable in self._chosen_variables: if ('float' or 'int') in new_data[variable].dtype.name: scaling_factor = new_data[variable].std() new_data[variable] += np.random.normal(loc=0.0, scale=self._noise * scaling_factor,size=self._sample_size) elif 'bool' in new_data[variable].dtype.name: probs = np.random.uniform(0, 1, self._sample_size ) new_data[variable] = np.where(probs < self._probability_of_change, np.logical_not(new_data[variable]), new_data[variable]) elif 'category' in new_data[variable].dtype.name: categories = new_data[variable].unique() # Find the set difference for each row changed_data = new_data[variable].apply( lambda row: list( set(categories) - set([row]) ) ) # Choose one out of the remaining changed_data = changed_data.apply( lambda row: random.choice(row) ) new_data[variable] = np.where(probs < self._probability_of_change, changed_data) new_data[variable].astype('category') new_estimator = CausalEstimator.get_estimator_object(new_data, self._target_estimand, self._estimate) new_effect = new_estimator.estimate_effect() sample_estimates[index] = new_effect.value refute = CausalRefutation( self._estimate.value, np.mean(sample_estimates), refutation_type="Refute: Bootstrap Sample Dataset" ) # We want to see if the estimate falls in the same distribution as the one generated by the refuter # Ideally that should be the case as running bootstrap should not have a significant effect on the ability # of the treatment to affect the outcome refute.add_significance_test_results( self.test_significance(self._estimate, sample_estimates) ) refute.add_refuter(self) return refute