import numpy as np
import pandas as pd
from dowhy.causal_estimator import CausalEstimator
from dowhy.causal_estimators.instrumental_variable_estimator import InstrumentalVariableEstimator
[docs]class RegressionDiscontinuityEstimator(CausalEstimator):
    """Compute effect of treatment using the regression discontinuity method.
    Estimates effect by transforming the problem to an instrumental variables
    problem.
    Supports additional parameters that can be specified in the estimate_effect() method.
    * 'rd_variable_name': name of the variable on which the discontinuity occurs. This is the instrument.
    * 'rd_threshold_value': Threshold at which the discontinuity occurs.
    * 'rd_bandwidth': Distance from the threshold within which confounders can be considered the same between treatment and control. Considered band is (threshold +- bandwidth)
    """
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.logger.info("Using Regression Discontinuity Estimator")
        self.rd_variable = self._data[self.rd_variable_name]
        self.symbolic_estimator = self.construct_symbolic_estimator(self._target_estimand)
        self.logger.info(self.symbolic_estimator)
    def _estimate_effect(self):
        upper_limit = self.rd_threshold_value + self.rd_bandwidth
        lower_limit = self.rd_threshold_value - self.rd_bandwidth
        rows_filter = np.s_[(self.rd_variable >= lower_limit) & (self.rd_variable <= upper_limit)]
        local_rd_variable = self.rd_variable[rows_filter]
        local_treatment_variable = self._treatment[self._treatment_name[0]][rows_filter] # indexing by treatment name again since this method assumes a single-dimensional treatment
        local_outcome_variable = self._outcome[rows_filter]
        local_df = pd.DataFrame(data={
            'local_rd_variable': local_rd_variable,
            'local_treatment': local_treatment_variable,
            'local_outcome': local_outcome_variable
        })
        print(local_df)
        iv_estimator = InstrumentalVariableEstimator(
            local_df,
            self._target_estimand,
            ['local_treatment'],
            ['local_outcome'],
            test_significance=self._significance_test,
            params={'iv_instrument_name': 'local_rd_variable'}
        )
        est = iv_estimator.estimate_effect()
        return est
[docs]    def construct_symbolic_estimator(self, estimand):
        return ""