Iterating over multiple refutation tests
The objective of this notebook is to compare the ability of refuters to detect the problems in a given set of estimators. Note: This notebook makes use of the optional dependencies: - pygraphviz - causalml
Import Dependencies
[1]:
from dowhy.datasets import linear_dataset
from dowhy import CausalModel
import causalml
Inspection Parameters
These parameters give us the option of inspecting the intermediate steps to sanity check the steps performed
[2]:
inspect_datasets = True
inspect_models = True
inspect_identified_estimands = True
inspect_estimates = True
inspect_refutations = True
Estimator List
We pass a list of strings, corresponding to the estimators of interest
[3]:
estimator_list = ["backdoor.propensity_score_matching", "backdoor.propensity_score_weighting", "backdoor.causalml.inference.meta.LRSRegressor"]
method_params= [ None, None, { "init_params":{} } ]
Refuter List
A list of strings, corresponding to each refuter we wish to run
[4]:
refuter_list = ["bootstrap_refuter", "data_subset_refuter"]
Create the Datasets
[5]:
# Parameters for creating the Dataset
TREATMENT_IS_BINARY = True
BETA = 10
NUM_SAMPLES = 5000
NUM_CONFOUNDERS = 5
NUM_INSTRUMENTS = 3
NUM_EFFECT_MODIFIERS = 2
# Creating a Linear Dataset with the given parameters
linear_data = linear_dataset(
beta = BETA,
num_common_causes = NUM_CONFOUNDERS,
num_instruments = NUM_INSTRUMENTS,
num_effect_modifiers = NUM_EFFECT_MODIFIERS,
num_samples = NUM_SAMPLES,
treatment_is_binary = True
)
# Other datasets come here
# Append them together in an array
datasets = [linear_data]
Inspect Data
[6]:
dataset_num = 1
if inspect_datasets is True:
for data in datasets:
print("####### Dataset {}###########################################################################################".format(dataset_num))
print(data['df'].head())
print("#############################################################################################################")
dataset_num += 1
####### Dataset 1###########################################################################################
X0 X1 Z0 Z1 Z2 W0 W1 W2 \
0 -1.372310 -0.633368 0.0 0.353144 0.0 -0.089772 -0.838580 0.284335
1 0.713931 0.802709 0.0 0.653470 1.0 -1.083905 -1.160895 0.591947
2 -0.384362 -0.451062 0.0 0.341027 1.0 -1.344159 -0.966449 -0.181318
3 1.515319 -1.363540 0.0 0.835704 1.0 0.342380 -1.004874 1.552707
4 0.368875 -0.829938 0.0 0.071521 0.0 -0.128446 -1.994744 0.519826
W3 W4 v0 y
0 1.223258 -1.124599 True 2.034000
1 1.779737 -0.612423 True 11.125450
2 -0.290884 -1.743305 False -9.777346
3 1.042000 -2.330312 True 10.343818
4 0.479455 -1.345510 False -4.253140
#############################################################################################################
Create the CausalModels
[7]:
models = []
for data in datasets:
model = CausalModel(
data = data['df'],
treatment = data['treatment_name'],
outcome = data['outcome_name'],
graph = data['gml_graph']
)
models.append(model)
INFO:dowhy.causal_model:Model to find the causal effect of treatment ['v0'] on outcome ['y']
Inspect Models
[8]:
model_num = 1
if inspect_models is True:
for model in models:
print("####### Model {}#############################################################################################".format(model_num))
print("Common Causes:",model._common_causes)
print("Effect Modifiers:",model._effect_modifiers)
print("Instruments:",model._instruments)
print("Outcome:",model._outcome)
print("Treatment:",model._treatment)
print("#############################################################################################################")
model_num += 1
####### Model 1#############################################################################################
Common Causes: ['W4', 'W2', 'W1', 'W3', 'W0', 'Unobserved Confounders']
Effect Modifiers: ['X0', 'X1']
Instruments: ['Z2', 'Z1', 'Z0']
Outcome: ['y']
Treatment: ['v0']
#############################################################################################################
Identify Effect
[9]:
identified_estimands = []
for model in models:
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
identified_estimands.append(identified_estimand)
WARNING:dowhy.causal_identifier:If this is observed data (not from a randomized experiment), there might always be missing confounders. Causal effect cannot be identified perfectly.
INFO:dowhy.causal_identifier:Continuing by ignoring these unobserved confounders because proceed_when_unidentifiable flag is True.
INFO:dowhy.causal_identifier:Instrumental variables for treatment and outcome:['Z2', 'Z1', 'Z0']
INFO:dowhy.causal_identifier:Frontdoor variables for treatment and outcome:[]
Identified Estimands
[10]:
estimand_count = 1
for estimand in identified_estimands:
print("####### Identified Estimand {}#####################################################################################".format(estimand_count))
print(estimand)
print("###################################################################################################################")
estimand_count += 1
####### Identified Estimand 1#####################################################################################
Estimand type: nonparametric-ate
### Estimand : 1
Estimand name: backdoor1
Estimand expression:
d
─────(Expectation(y|W4,W2,W1,W3,W0))
d[v₀]
Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W2,W1,W3,W0,U) = P(y|v0,W4,W2,W1,W3,W0)
### Estimand : 2
Estimand name: backdoor2
Estimand expression:
d
─────(Expectation(y|W4,W2,W1,W3,W0,X1))
d[v₀]
Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W2,W1,W3,W0,X1,U) = P(y|v0,W4,W2,W1,W3,W0,X1)
### Estimand : 3
Estimand name: backdoor3
Estimand expression:
d
─────(Expectation(y|W4,W2,W1,W3,W0,X0))
d[v₀]
Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W2,W1,W3,W0,X0,U) = P(y|v0,W4,W2,W1,W3,W0,X0)
### Estimand : 4
Estimand name: backdoor4 (Default)
Estimand expression:
d
─────(Expectation(y|W4,W2,W1,W3,W0,X1,X0))
d[v₀]
Estimand assumption 1, Unconfoundedness: If U→{v0} and U→y then P(y|v0,W4,W2,W1,W3,W0,X1,X0,U) = P(y|v0,W4,W2,W1,W3,W0,X1,X0)
### Estimand : 5
Estimand name: iv
Estimand expression:
Expectation(Derivative(y, [Z2, Z1, Z0])*Derivative([v0], [Z2, Z1, Z0])**(-1))
Estimand assumption 1, As-if-random: If U→→y then ¬(U →→{Z2,Z1,Z0})
Estimand assumption 2, Exclusion: If we remove {Z2,Z1,Z0}→{v0}, then ¬({Z2,Z1,Z0}→y)
### Estimand : 6
Estimand name: frontdoor
No such variable found!
###################################################################################################################
Estimate Effect
[11]:
estimate_list = []
for i in range(len(identified_estimands)):
for j in range(len(estimator_list)):
estimate = model.estimate_effect(
identified_estimands[i],
method_name=estimator_list[j],
method_params=method_params[j]
)
estimate_list.append(estimate)
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
/home/amit/py-envs/env3.8/lib/python3.8/site-packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
return f(**kwargs)
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
/home/amit/py-envs/env3.8/lib/python3.8/site-packages/sklearn/utils/validation.py:72: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
return f(**kwargs)
The sklearn.utils.testing module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.utils. Anything that cannot be imported from sklearn.utils is now part of the private API.
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0464
INFO:causalml: RMSE (Treatment): 0.7089
INFO:causalml: sMAPE (Control): 0.5415
INFO:causalml: sMAPE (Treatment): 0.1450
INFO:causalml: Gini (Control): 0.7392
INFO:causalml: Gini (Treatment): 0.9950
{'X': W4 W2 W1 W3 W0 X1 X0 \
0 -1.124599 0.284335 -0.838580 1.223258 -0.089772 -0.633368 -1.372310
1 -0.612423 0.591947 -1.160895 1.779737 -1.083905 0.802709 0.713931
2 -1.743305 -0.181318 -0.966449 -0.290884 -1.344159 -0.451062 -0.384362
3 -2.330312 1.552707 -1.004874 1.042000 0.342380 -1.363540 1.515319
4 -1.345510 0.519826 -1.994744 0.479455 -0.128446 -0.829938 0.368875
.. ... ... ... ... ... ... ...
995 -2.515948 0.660984 -1.169142 -2.272146 -1.210642 -0.284190 -0.127452
996 -2.943305 1.765768 -0.453093 1.811460 1.207236 1.056658 2.059214
997 -0.903931 -0.733567 -0.631920 2.074003 -1.104834 -0.227741 -0.262214
998 -0.107884 0.866378 -1.644002 -0.046340 -1.318515 0.888535 1.662692
999 -1.664178 0.364437 -0.018848 0.440983 -1.575637 -0.289049 -0.646924
X0 X1
0 -1.372310 -0.633368
1 0.713931 0.802709
2 -0.384362 -0.451062
3 1.515319 -1.363540
4 0.368875 -0.829938
.. ... ...
995 -0.127452 -0.284190
996 2.059214 1.056658
997 -0.262214 -0.227741
998 1.662692 0.888535
999 -0.646924 -0.289049
[1000 rows x 9 columns], 'y': 0 2.034000
1 11.125450
2 -9.777346
3 10.343818
4 -4.253140
...
995 -13.283829
996 17.211685
997 4.590505
998 13.321122
999 -8.100697
Name: y, Length: 1000, dtype: float64, 'treatment': 0 True
1 True
2 False
3 True
4 False
...
995 False
996 True
997 True
998 True
999 False
Name: v0, Length: 1000, dtype: bool}
Estimate Values
[12]:
estimand_count = 1
if inspect_estimates is True:
for estimand in estimate_list:
print("####### Estimand {}#######################################################################################".format(estimand_count))
print("*** Class Name ***")
print()
print(estimand.params['estimator_class'])
print()
print(estimand)
print("########################################################################################################")
print()
estimand_count += 1
####### Estimand 1#######################################################################################
*** Class Name ***
<class 'dowhy.causal_estimators.propensity_score_matching_estimator.PropensityScoreMatchingEstimator'>
*** Causal Estimate ***
## Identified estimand
Estimand type: nonparametric-ate
## Realized estimand
b: y~v0+W4+W2+W1+W3+W0+X1+X0
Target units: ate
## Estimate
Mean value: 12.89367255934708
########################################################################################################
####### Estimand 2#######################################################################################
*** Class Name ***
<class 'dowhy.causal_estimators.propensity_score_weighting_estimator.PropensityScoreWeightingEstimator'>
*** Causal Estimate ***
## Identified estimand
Estimand type: nonparametric-ate
## Realized estimand
b: y~v0+W4+W2+W1+W3+W0+X1+X0
Target units: ate
## Estimate
Mean value: 12.075122341243496
########################################################################################################
####### Estimand 3#######################################################################################
*** Class Name ***
<class 'dowhy.causal_estimators.causalml.Causalml'>
*** Causal Estimate ***
## Identified estimand
Estimand type: nonparametric-ate
## Realized estimand
b: y~v0+W4+W2+W1+W3+W0+X1+X0
Target units: ate
## Estimate
Mean value: [11.29290641]
########################################################################################################
Refute Estimate
[13]:
refutation_list = []
for estimand in identified_estimands:
for estimate in estimate_list:
for refuter in refuter_list:
ref = model.refute_estimate(estimand, estimate,method_name=refuter)
refutation_list.append(ref)
INFO:dowhy.causal_refuters.bootstrap_refuter:All variables required: Running bootstrap adding noise to confounders, instrumental variables and effect modifiers.
INFO:dowhy.causal_refuters.bootstrap_refuter:INFO: The chosen variables are: W4,W2,W1,W3,W0,X1,X0,Z2,Z1,Z0,X0,X1
INFO:dowhy.causal_refuters.bootstrap_refuter:Refutation over 100 simulated datasets of size 1000 each
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_refuters.bootstrap_refuter:Making use of Bootstrap as we have more than 100 examples.
Note: The greater the number of examples, the more accurate are the confidence estimates
INFO:dowhy.causal_refuters.data_subset_refuter:Refutation over 0.8 simulated datasets of size 800.0 each
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Matching Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_refuters.data_subset_refuter:Making use of Bootstrap as we have more than 100 examples.
Note: The greater the number of examples, the more accurate are the confidence estimates
INFO:dowhy.causal_refuters.bootstrap_refuter:All variables required: Running bootstrap adding noise to confounders, instrumental variables and effect modifiers.
INFO:dowhy.causal_refuters.bootstrap_refuter:INFO: The chosen variables are: W4,W2,W1,W3,W0,X1,X0,Z2,Z1,Z0,X0,X1
INFO:dowhy.causal_refuters.bootstrap_refuter:Refutation over 100 simulated datasets of size 1000 each
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_refuters.bootstrap_refuter:Making use of Bootstrap as we have more than 100 examples.
Note: The greater the number of examples, the more accurate are the confidence estimates
INFO:dowhy.causal_refuters.data_subset_refuter:Refutation over 0.8 simulated datasets of size 800.0 each
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_estimator:INFO: Using Propensity Score Weighting Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
INFO:dowhy.causal_refuters.data_subset_refuter:Making use of Bootstrap as we have more than 100 examples.
Note: The greater the number of examples, the more accurate are the confidence estimates
INFO:dowhy.causal_refuters.bootstrap_refuter:All variables required: Running bootstrap adding noise to confounders, instrumental variables and effect modifiers.
INFO:dowhy.causal_refuters.bootstrap_refuter:INFO: The chosen variables are: W4,W2,W1,W3,W0,X1,X0,Z2,Z1,Z0,X0,X1
INFO:dowhy.causal_refuters.bootstrap_refuter:Refutation over 100 simulated datasets of size 1000 each
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9200
INFO:causalml: RMSE (Treatment): 0.9412
INFO:causalml: sMAPE (Control): 0.4925
INFO:causalml: sMAPE (Treatment): 0.1825
INFO:causalml: Gini (Control): 0.7570
INFO:causalml: Gini (Treatment): 0.9895
{'X': W4 W2 W1 W3 W0 X1 X0 \
283 -2.374933 0.728965 -0.368648 -0.606642 1.295353 -1.524890 0.835089
817 0.427994 1.189968 -0.603155 -0.053104 0.380095 -0.564310 1.043702
433 -1.848292 1.925231 -0.746389 0.838242 0.454850 -1.782858 0.315274
518 -1.612950 -0.302839 -2.806152 2.278601 0.851459 -0.216496 -0.266022
760 -1.603621 0.332341 0.905154 -1.867772 -0.335681 -1.016100 0.900808
.. ... ... ... ... ... ... ...
660 -1.355739 1.511612 0.382854 -1.674767 1.278216 0.055724 0.586001
983 -1.218331 1.260066 -0.595561 -0.288691 0.395709 -0.170658 -0.066706
98 -0.845113 -0.187431 -2.262896 1.378585 -0.644947 1.959020 0.299983
972 -0.081695 0.594733 -0.969979 1.791205 1.145891 -1.370514 -1.418567
923 -1.936169 2.043045 -0.395622 2.093163 -0.270379 -1.179542 1.467835
X0 X1
283 0.835089 -1.524890
817 1.043702 -0.564310
433 0.315274 -1.782858
518 -0.266022 -0.216496
760 0.900808 -1.016100
.. ... ...
660 0.586001 0.055724
983 -0.066706 -0.170658
98 0.299983 1.959020
972 -1.418567 -1.370514
923 1.467835 -1.179542
[1000 rows x 9 columns], 'y': 283 7.081134
817 17.203287
433 7.710126
518 -0.840870
760 -7.109575
...
660 11.491007
983 7.361146
98 -3.658929
972 10.333966
923 11.892142
Name: y, Length: 1000, dtype: float64, 'treatment': 283 True
817 True
433 True
518 False
760 False
...
660 True
983 True
98 False
972 True
923 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8989
INFO:causalml: RMSE (Treatment): 0.9262
INFO:causalml: sMAPE (Control): 0.5243
INFO:causalml: sMAPE (Treatment): 0.1639
INFO:causalml: Gini (Control): 0.7420
INFO:causalml: Gini (Treatment): 0.9882
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
583 -0.908339 -0.943344 -1.576363 -0.129984 0.644029 -0.283406 1.047899
894 -0.035766 0.592029 -2.679506 0.298057 -0.918355 -0.136446 1.547318
441 0.082396 1.734068 -1.234019 -1.393834 -0.012471 0.176847 2.271376
19 -0.501483 -0.141436 -0.783533 2.196045 -1.062579 -1.248909 0.217419
635 -0.328230 2.032342 -1.397294 1.604553 -0.906293 1.272577 1.348827
.. ... ... ... ... ... ... ...
681 -0.659808 1.173054 0.680265 -1.119354 1.271902 -0.028103 1.906201
999 -1.548070 0.488709 0.070530 0.535239 -1.520216 -0.223398 -0.643285
601 0.197730 -0.348816 -2.289017 0.706303 -0.436227 -0.869317 0.393254
922 -0.957356 2.303012 1.357823 -2.150545 -0.526943 0.693399 -0.542549
85 -1.507585 1.395092 -0.629172 -0.127097 -1.095902 -2.763081 -0.159951
X0 X1
583 1.047899 -0.283406
894 1.547318 -0.136446
441 2.271376 0.176847
19 0.217419 -1.248909
635 1.348827 1.272577
.. ... ...
681 1.906201 -0.028103
999 -0.643285 -0.223398
601 0.393254 -0.869317
922 -0.542549 0.693399
85 -0.159951 -2.763081
[1000 rows x 9 columns], 'y': 583 -2.819370
894 -2.776312
441 18.248395
19 6.700542
635 15.613398
...
681 18.090454
999 -8.100697
601 -1.707354
922 5.614218
85 -0.384362
Name: y, Length: 1000, dtype: float64, 'treatment': 583 False
894 False
441 True
19 True
635 True
...
681 True
999 False
601 False
922 True
85 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0143
INFO:causalml: RMSE (Treatment): 0.9978
INFO:causalml: sMAPE (Control): 0.5401
INFO:causalml: sMAPE (Treatment): 0.1764
INFO:causalml: Gini (Control): 0.7350
INFO:causalml: Gini (Treatment): 0.9868
{'X': W4 W2 W1 W3 W0 X1 X0 \
46 -0.811883 1.026880 -0.632654 0.186775 -1.837921 0.413697 1.853316
438 -1.340902 0.995483 -0.161424 0.746464 -0.289784 -0.655573 0.779645
658 -0.748875 0.200811 -2.089700 0.715665 -0.392931 -0.898996 0.666150
789 -1.509320 -0.240769 1.557885 -0.108347 -0.045226 0.412988 1.082957
702 1.732221 1.344143 0.218604 -0.185893 1.519994 0.269678 0.498933
.. ... ... ... ... ... ... ...
351 -0.831764 0.623752 -0.471018 0.970281 -0.177779 -1.707145 0.027269
513 -0.705018 1.506675 -0.629371 2.376489 3.098338 -0.308193 0.523668
784 -1.254205 0.728475 -1.482794 -0.023014 -0.163497 2.000347 1.558882
631 0.369918 2.644170 -0.867136 1.586151 -0.202800 -0.997252 0.248708
469 -1.874152 0.163053 0.352744 -2.044516 -1.017211 -1.678673 1.633251
X0 X1
46 1.853316 0.413697
438 0.779645 -0.655573
658 0.666150 -0.898996
789 1.082957 0.412988
702 0.498933 0.269678
.. ... ...
351 0.027269 -1.707145
513 0.523668 -0.308193
784 1.558882 2.000347
631 0.248708 -0.997252
469 1.633251 -1.678673
[1000 rows x 9 columns], 'y': 46 -6.116730
438 8.571639
658 8.483868
789 11.103887
702 23.877017
...
351 7.214058
513 22.411994
784 14.827481
631 14.220450
469 4.435916
Name: y, Length: 1000, dtype: float64, 'treatment': 46 False
438 True
658 True
789 True
702 True
...
351 True
513 True
784 True
631 True
469 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8926
INFO:causalml: RMSE (Treatment): 0.9835
INFO:causalml: sMAPE (Control): 0.5059
INFO:causalml: sMAPE (Treatment): 0.1802
INFO:causalml: Gini (Control): 0.7225
INFO:causalml: Gini (Treatment): 0.9871
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
110 -1.701609 2.531055 -0.293499 1.383457 -0.385890 1.021554 0.634298
973 0.497997 0.870619 -1.399658 0.868762 1.005668 -1.759774 -1.487125
253 0.008862 0.472530 -0.278656 1.597479 -1.854917 0.218323 1.158774
774 -0.690558 0.152730 0.466841 -0.784936 0.262644 -1.272747 0.138279
25 -0.555348 1.680622 -0.274376 0.085447 -1.937412 -0.524363 1.456005
.. ... ... ... ... ... ... ...
433 -1.759517 1.932299 -0.786689 0.690382 0.385271 -1.815584 0.191754
517 -1.412816 0.065002 0.010819 1.228889 -1.019312 -0.737759 1.051565
241 -0.690211 2.358994 -0.801637 1.877993 0.244108 -2.726661 -0.526157
840 0.825515 0.764723 0.303671 0.981057 -0.217922 -0.091909 0.598068
808 -0.535757 0.997121 -0.516028 -0.574787 0.787579 -1.200082 1.220149
X0 X1
110 0.634298 1.021554
973 -1.487125 -1.759774
253 1.158774 0.218323
774 0.138279 -1.272747
25 1.456005 -0.524363
.. ... ...
433 0.191754 -1.815584
517 1.051565 -0.737759
241 -0.526157 -2.726661
840 0.598068 -0.091909
808 1.220149 -1.200082
[1000 rows x 9 columns], 'y': 110 11.934711
973 8.500263
253 11.727481
774 6.080336
25 8.623876
...
433 7.710126
517 -4.981074
241 7.793042
840 15.748095
808 14.588358
Name: y, Length: 1000, dtype: float64, 'treatment': 110 True
973 True
253 True
774 True
25 True
...
433 True
517 False
241 True
840 True
808 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
553 -0.320702 2.050546 0.848221 0.065701 0.516036 -0.115430 -0.448765
263 -0.436130 1.311757 0.801788 0.976110 -1.434723 1.339524 -0.740828
318 -0.323014 -0.607556 -0.157762 0.004904 1.536271 -0.407724 -0.367022
106 -1.558304 1.265530 0.118377 -0.333680 -1.996853 -1.773391 1.138244
926 1.123598 0.627467 -0.761817 1.094964 -0.861427 -0.395120 0.162772
.. ... ... ... ... ... ... ...
354 -2.470658 2.299726 -0.513947 -0.533862 1.235853 0.471081 0.403984
665 -2.051712 0.111099 -0.161581 -0.859187 0.133294 -0.468604 -0.057014
43 -0.942660 1.261453 0.077870 0.553020 -1.012981 -0.392755 1.398809
805 -2.534599 -0.173973 -0.855050 -0.359868 0.531906 -2.824743 0.317926
873 -0.107712 -0.360830 0.754699 0.645171 -1.063732 -2.205695 0.040772
X0 X1
553 -0.448765 -0.115430
263 -0.740828 1.339524
318 -0.367022 -0.407724
106 1.138244 -1.773391
926 0.162772 -0.395120
.. ... ...
354 0.403984 0.471081
665 -0.057014 -0.468604
43 1.398809 -0.392755
805 0.317926 -2.824743
873 0.040772 -2.205695
[1000 rows x 9 columns], 'y': 553 11.754777
263 5.315574
318 10.068543
106 -8.631314
926 13.032000
...
354 9.572774
665 2.331887
43 11.590880
805 -0.721618
873 4.499265
Name: y, Length: 1000, dtype: float64, 'treatment': 553 True
263 True
318 True
106 False
926 True
...
354 True
665 True
43 True
805 True
873 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1093
INFO:causalml: RMSE (Treatment): 1.0340
INFO:causalml: sMAPE (Control): 0.5506
INFO:causalml: sMAPE (Treatment): 0.1787
INFO:causalml: Gini (Control): 0.7321
INFO:causalml: Gini (Treatment): 0.9865
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9188
INFO:causalml: RMSE (Treatment): 0.9924
INFO:causalml: sMAPE (Control): 0.5366
INFO:causalml: sMAPE (Treatment): 0.1953
INFO:causalml: Gini (Control): 0.7756
INFO:causalml: Gini (Treatment): 0.9901
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
615 -1.406038 0.572876 -0.698405 1.326372 -2.542542 -1.169138 2.178432
124 -1.122468 2.232510 0.453520 0.286994 0.573583 -0.104966 -0.616633
671 -1.835079 1.952091 0.539765 0.587736 -1.553163 -0.139247 -0.565739
354 -2.414675 2.195083 -0.552665 -0.286460 1.364807 0.672503 0.211691
971 -1.008125 0.813609 -1.174516 0.831382 0.600010 1.860670 1.222419
.. ... ... ... ... ... ... ...
140 -0.076572 -0.183218 -1.087970 1.721934 -1.409678 0.371262 0.084339
441 0.164827 1.727422 -1.133955 -1.106994 -0.174687 0.462557 2.301826
944 -1.317575 1.334951 0.214215 -0.090740 0.344393 -1.939722 0.185537
504 -1.936715 2.198026 0.936412 -0.674665 -1.200826 -0.802310 0.450366
579 -0.367602 0.368260 0.366198 0.370464 -1.268264 -1.013708 -0.296588
X0 X1
615 2.178432 -1.169138
124 -0.616633 -0.104966
671 -0.565739 -0.139247
354 0.211691 0.672503
971 1.222419 1.860670
.. ... ...
140 0.084339 0.371262
441 2.301826 0.462557
944 0.185537 -1.939722
504 0.450366 -0.802310
579 -0.296588 -1.013708
[1000 rows x 9 columns], 'y': 615 -8.516564
124 10.147994
671 -6.150284
354 9.572774
971 16.046613
...
140 -3.623800
441 18.248395
944 5.893961
504 4.307409
579 3.518524
Name: y, Length: 1000, dtype: float64, 'treatment': 615 False
124 True
671 False
354 True
971 True
...
140 False
441 True
944 True
504 True
579 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1321
INFO:causalml: RMSE (Treatment): 0.9716
INFO:causalml: sMAPE (Control): 0.5822
INFO:causalml: sMAPE (Treatment): 0.1791
INFO:causalml: Gini (Control): 0.6922
INFO:causalml: Gini (Treatment): 0.9885
{'X': W4 W2 W1 W3 W0 X1 X0 \
483 -1.202986 0.901468 -0.302848 0.668258 -1.940498 0.222960 0.612932
778 -2.032255 -0.391939 0.024425 0.116800 0.320421 -1.642899 0.789443
364 -1.123898 1.426482 1.582027 -0.519401 -1.549683 -0.385146 0.951193
437 -1.765053 2.519452 0.710983 0.111217 -1.534482 -1.368957 -0.086755
518 -1.577778 -0.426756 -2.600338 2.425733 0.913174 0.100396 -0.440147
.. ... ... ... ... ... ... ...
414 -0.773099 0.363187 -2.923567 0.521046 -1.501182 -1.106220 2.408646
419 -0.132182 -0.589329 0.304130 0.361943 -0.778306 1.341490 0.877095
971 -1.156021 0.689227 -1.100481 1.059006 0.528747 1.847563 1.274255
855 -1.604108 2.748376 0.301092 -0.817147 -0.256705 -0.736611 0.902897
971 -1.047919 0.711559 -1.179255 1.142261 0.330883 1.845635 1.100617
X0 X1
483 0.612932 0.222960
778 0.789443 -1.642899
364 0.951193 -0.385146
437 -0.086755 -1.368957
518 -0.440147 0.100396
.. ... ...
414 2.408646 -1.106220
419 0.877095 1.341490
971 1.274255 1.847563
855 0.902897 -0.736611
971 1.100617 1.845635
[1000 rows x 9 columns], 'y': 483 5.198246
778 6.019405
364 7.693260
437 1.751543
518 -0.840870
...
414 -6.908901
419 12.060932
971 16.046613
855 8.939223
971 16.046613
Name: y, Length: 1000, dtype: float64, 'treatment': 483 True
778 True
364 True
437 True
518 False
...
414 False
419 True
971 True
855 True
971 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9750
INFO:causalml: RMSE (Treatment): 0.9816
INFO:causalml: sMAPE (Control): 0.4629
INFO:causalml: sMAPE (Treatment): 0.1647
INFO:causalml: Gini (Control): 0.7145
INFO:causalml: Gini (Treatment): 0.9878
{'X': W4 W2 W1 W3 W0 X1 X0 \
257 -2.430668 2.899099 -1.685012 0.871124 -0.830481 0.568640 -0.719302
190 -1.027333 0.125718 -0.288925 0.143558 -1.665370 -1.891319 1.401234
608 0.582419 2.904835 -1.679491 -1.433618 0.523356 1.427560 -0.365038
136 -1.844962 -0.175424 -1.127409 1.046034 -0.143139 0.929437 -0.113900
698 -1.136466 1.658704 0.342969 1.270983 -1.275504 0.318959 0.063527
.. ... ... ... ... ... ... ...
2 -1.717141 -0.110696 -0.851043 -0.159615 -1.330690 -0.575017 0.179750
525 -1.122974 0.528479 -0.843057 0.862124 0.326137 -0.908267 0.675998
818 -2.224628 1.267784 -0.121270 0.339637 -2.509032 -0.733553 0.969607
772 -1.528754 0.577981 -1.230741 1.515439 -0.409506 -1.244127 -0.229884
725 -1.062839 1.197021 -2.332341 1.110674 -0.732020 1.117293 -1.286959
X0 X1
257 -0.719302 0.568640
190 1.401234 -1.891319
608 -0.365038 1.427560
136 -0.113900 0.929437
698 0.063527 0.318959
.. ... ...
2 0.179750 -0.575017
525 0.675998 -0.908267
818 0.969607 -0.733553
772 -0.229884 -1.244127
725 -1.286959 1.117293
[1000 rows x 9 columns], 'y': 257 2.568588
190 3.713965
608 13.248344
136 -4.977571
698 7.381116
...
2 -9.777346
525 9.406466
818 -11.770683
772 3.250030
725 -3.118501
Name: y, Length: 1000, dtype: float64, 'treatment': 257 True
190 True
608 True
136 False
698 True
...
2 False
525 True
818 False
772 True
725 False
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0590
INFO:causalml: RMSE (Treatment): 1.0471
INFO:causalml: sMAPE (Control): 0.5733
INFO:causalml: sMAPE (Treatment): 0.1911
INFO:causalml: Gini (Control): 0.7229
INFO:causalml: Gini (Treatment): 0.9862
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
277 -0.818334 0.467892 0.008818 -0.768910 -0.762255 -2.037111 -0.267297
616 -1.801324 0.465489 1.310050 0.431569 -0.724100 0.078453 -0.281507
251 -2.045885 -0.672299 0.461639 1.102677 -0.212650 -0.728915 0.412898
779 -1.293648 0.585981 0.057450 0.159790 0.220197 -0.968476 -0.039945
891 -0.173672 -0.339079 -1.162503 1.699004 1.016864 0.402539 1.951243
.. ... ... ... ... ... ... ...
220 0.682316 1.258320 -0.491097 0.533450 -1.171028 -1.744354 0.764456
880 -1.819713 1.795421 2.289274 -0.412771 0.834959 -0.625579 0.310392
600 -2.029851 0.999468 -0.650238 0.199650 -1.522578 -0.197616 -0.487230
85 -1.689351 1.444803 -0.346028 -0.249449 -0.882348 -2.851097 -0.324837
982 -0.727784 0.731025 -0.402121 -0.987436 0.733502 -1.450469 1.225178
X0 X1
277 -0.267297 -2.037111
616 -0.281507 0.078453
251 0.412898 -0.728915
779 -0.039945 -0.968476
891 1.951243 0.402539
.. ... ...
220 0.764456 -1.744354
880 0.310392 -0.625579
600 -0.487230 -0.197616
85 -0.324837 -2.851097
982 1.225178 -1.450469
[1000 rows x 9 columns], 'y': 277 1.863805
616 4.604313
251 5.436045
779 7.001850
891 20.166272
...
220 10.878908
880 10.445032
600 -2.038553
85 -0.384362
982 12.003112
Name: y, Length: 1000, dtype: float64, 'treatment': 277 True
616 True
251 True
779 True
891 True
...
220 True
880 True
600 True
85 True
982 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.6412
INFO:causalml: RMSE (Treatment): 0.8491
INFO:causalml: sMAPE (Control): 0.4837
INFO:causalml: sMAPE (Treatment): 0.1494
INFO:causalml: Gini (Control): 0.7786
INFO:causalml: Gini (Treatment): 0.9905
{'X': W4 W2 W1 W3 W0 X1 X0 \
241 -0.845996 2.158548 -0.696759 1.834804 0.107037 -2.852733 -0.048085
896 -2.469059 -0.770860 1.142546 0.461676 -1.314687 -0.322351 -1.475853
723 -0.193634 1.302947 0.686441 0.892449 -0.623708 -0.382725 0.546637
758 -0.229260 0.153205 -0.797357 0.977691 -0.149110 -1.096648 1.138511
649 -2.097121 1.286213 -0.793670 1.771977 -0.505928 -0.172366 1.686361
.. ... ... ... ... ... ... ...
177 -1.890133 0.349791 2.039631 0.747699 0.029708 -1.310446 2.620265
265 -0.579746 2.246286 0.968432 -1.288886 -0.003273 -0.503409 0.023601
786 1.367241 2.337107 -1.382961 0.925568 -1.373163 -0.581355 -1.057320
563 -0.487488 -0.303342 -2.960748 1.385569 -1.367310 1.270372 0.489614
145 -2.808225 1.476268 -0.669289 0.837867 0.318861 0.101554 -0.005306
X0 X1
241 -0.048085 -2.852733
896 -1.475853 -0.322351
723 0.546637 -0.382725
758 1.138511 -1.096648
649 1.686361 -0.172366
.. ... ...
177 2.620265 -1.310446
265 0.023601 -0.503409
786 -1.057320 -0.581355
563 0.489614 1.270372
145 -0.005306 0.101554
[1000 rows x 9 columns], 'y': 241 7.793042
896 -7.004058
723 12.592456
758 12.802985
649 11.515556
...
177 13.887378
265 9.003069
786 8.954078
563 -5.142521
145 -4.715614
Name: y, Length: 1000, dtype: float64, 'treatment': 241 True
896 True
723 True
758 True
649 True
...
177 True
265 True
786 True
563 False
145 False
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9464
INFO:causalml: RMSE (Treatment): 0.9755
INFO:causalml: sMAPE (Control): 0.4851
INFO:causalml: sMAPE (Treatment): 0.1754
INFO:causalml: Gini (Control): 0.7484
INFO:causalml: Gini (Treatment): 0.9879
{'X': W4 W2 W1 W3 W0 X1 X0 \
303 -1.782573 1.161716 -0.132032 1.247322 0.906861 -0.589598 0.566135
928 -0.082647 -0.854352 -0.877404 0.258306 -0.690152 0.621097 -1.202361
188 1.870551 1.402824 -0.641787 0.898412 -0.955153 0.086009 0.396813
7 0.134461 1.635799 -1.651504 0.903543 -1.832069 -0.771336 1.027382
536 -1.413058 0.331189 -0.549325 -0.161507 -0.050805 1.085822 -1.137920
.. ... ... ... ... ... ... ...
498 1.018865 1.167549 0.300948 0.499916 0.024608 -0.209970 0.662375
42 0.685643 0.464868 -0.530367 1.008595 1.087561 0.792421 0.560773
540 -1.459292 1.994080 -0.337395 0.007646 2.188399 0.628455 1.352454
83 -0.635356 -0.756915 0.860081 0.351036 -0.501081 -0.642911 -0.373147
781 -0.997105 1.206782 -0.466358 -0.047794 -0.294843 -1.540877 0.881991
X0 X1
303 0.566135 -0.589598
928 -1.202361 0.621097
188 0.396813 0.086009
7 1.027382 -0.771336
536 -1.137920 1.085822
.. ... ...
498 0.662375 -0.209970
42 0.560773 0.792421
540 1.352454 0.628455
83 -0.373147 -0.642911
781 0.881991 -1.540877
[1000 rows x 9 columns], 'y': 303 11.687300
928 3.466874
188 17.138200
7 -2.646268
536 3.123954
...
498 17.581110
42 19.574715
540 19.517995
83 5.781616
781 8.454186
Name: y, Length: 1000, dtype: float64, 'treatment': 303 True
928 True
188 True
7 False
536 True
...
498 True
42 True
540 True
83 True
781 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9429
INFO:causalml: RMSE (Treatment): 0.9998
INFO:causalml: sMAPE (Control): 0.5267
INFO:causalml: sMAPE (Treatment): 0.1899
INFO:causalml: Gini (Control): 0.7351
INFO:causalml: Gini (Treatment): 0.9890
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
955 -0.497739 0.540374 -1.677981 1.349484 2.091278 -1.039961 1.206380
435 -1.256109 1.764761 -0.149741 0.355327 -0.774481 0.614483 1.777844
354 -2.424064 2.357013 -0.394928 -0.458982 1.377004 0.445340 0.305403
251 -1.935402 -0.583126 0.125224 1.325398 -0.135370 -0.313797 0.341698
479 -2.307127 0.566961 -0.554632 -0.132100 -2.127523 0.432313 -0.415788
.. ... ... ... ... ... ... ...
32 -0.982458 0.620985 0.106409 -0.629536 -1.279116 0.532026 0.410600
233 0.083363 1.012340 -0.976858 0.790091 0.179734 -1.685756 3.030718
26 -0.078329 0.136605 0.222189 2.949437 -0.460346 -1.743903 1.989701
379 -2.647414 2.197177 -0.438679 -0.673437 0.049419 -1.671370 0.620090
845 -1.097083 -0.445490 -1.364601 0.971446 -1.841247 0.187582 -0.453287
X0 X1
955 1.206380 -1.039961
435 1.777844 0.614483
354 0.305403 0.445340
251 0.341698 -0.313797
479 -0.415788 0.432313
.. ... ...
32 0.410600 0.532026
233 3.030718 -1.685756
26 1.989701 -1.743903
379 0.620090 -1.671370
845 -0.453287 0.187582
[1000 rows x 9 columns], 'y': 955 18.503792
435 13.857254
354 9.572774
251 5.436045
479 -4.199785
...
32 -5.941016
233 21.285516
26 17.468518
379 -6.731177
845 -8.309502
Name: y, Length: 1000, dtype: float64, 'treatment': 955 True
435 True
354 True
251 True
479 True
...
32 False
233 True
26 True
379 False
845 False
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9546
INFO:causalml: RMSE (Treatment): 0.8873
INFO:causalml: sMAPE (Control): 0.5285
INFO:causalml: sMAPE (Treatment): 0.1608
INFO:causalml: Gini (Control): 0.7781
INFO:causalml: Gini (Treatment): 0.9905
{'X': W4 W2 W1 W3 W0 X1 X0 \
137 -1.870239 1.002550 -1.280447 0.096607 -1.693014 -0.218161 -0.988356
265 -0.513343 2.114772 0.996179 -1.443963 -0.114143 -0.406941 -0.045786
777 -0.493441 1.716078 0.792791 -0.043363 -0.556987 -1.268526 1.451878
5 0.081454 -0.180901 -0.354700 -1.459105 0.296656 -0.759733 -0.701632
487 -1.420850 0.398972 1.112433 -0.228356 0.349759 -1.154691 -0.299466
.. ... ... ... ... ... ... ...
467 -1.547984 1.672450 0.493790 -0.006961 1.256418 0.077298 0.376628
118 -1.453238 0.945857 0.236851 -0.637282 -0.686940 0.717364 0.140900
866 -2.650644 -0.029222 -0.964702 -0.443857 0.949448 0.071478 0.590612
776 -2.793850 -0.766315 -0.437998 0.125062 -1.087616 0.492760 1.852926
454 -0.520798 0.402434 -0.807018 0.681877 -1.949777 0.007282 2.327974
X0 X1
137 -0.988356 -0.218161
265 -0.045786 -0.406941
777 1.451878 -1.268526
5 -0.701632 -0.759733
487 -0.299466 -1.154691
.. ... ...
467 0.376628 0.077298
118 0.140900 0.717364
866 0.590612 0.071478
776 1.852926 0.492760
454 2.327974 0.007282
[1000 rows x 9 columns], 'y': 137 -9.707122
265 9.003069
777 12.450890
5 4.741680
487 5.416248
...
467 12.156180
118 6.682644
866 6.414822
776 -12.340879
454 12.121477
Name: y, Length: 1000, dtype: float64, 'treatment': 137 False
265 True
777 True
5 True
487 True
...
467 True
118 True
866 True
776 False
454 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0762
INFO:causalml: RMSE (Treatment): 0.9945
INFO:causalml: sMAPE (Control): 0.5339
INFO:causalml: sMAPE (Treatment): 0.1711
{'X': W4 W2 W1 W3 W0 X1 X0 \
829 -1.405635 -0.270187 -1.959880 -0.889368 -1.212302 -1.298171 -0.443938
201 -2.536105 0.014067 -1.257571 0.682911 -1.447216 -1.100839 1.130308
561 -0.529711 -0.174353 -0.254554 0.894866 -2.286815 0.253255 1.165439
370 -1.243201 0.578033 -1.039329 0.953519 -1.614025 -0.207823 0.878261
921 -0.681534 0.706844 -0.752564 0.023439 0.770400 -0.849537 1.956007
.. ... ... ... ... ... ... ...
47 0.236697 1.161300 -1.267837 -1.410815 -0.159012 -1.005670 1.316541
526 1.648612 0.824729 -0.062684 0.566424 0.909295 -0.692820 0.337959
67 -0.705354 0.116565 -0.145444 1.079454 -0.611558 -2.607392 -1.660696
637 -1.335351 0.667491 -0.005216 -1.587485 -2.347921 -1.555458 1.082437
96 1.179559 0.881080 -0.248690 0.957809 -1.554978 -1.030593 1.149389
X0 X1
829 -0.443938 -1.298171
201 1.130308 -1.100839
561 1.165439 0.253255
370 0.878261 -0.207823
921 1.956007 -0.849537
.. ... ...
47 1.316541 -1.005670
526 0.337959 -0.692820
67 -1.660696 -2.607392
637 1.082437 -1.555458
96 1.149389 -1.030593
[1000 rows x 9 columns], 'y': 829 -9.531238
201 -10.714346
561 8.271140
370 6.533270
921 0.366548
...
47 11.849394
526 20.291162
67 -0.972001
637 -10.850731
96 14.140134
Name: y, Length: 1000, dtype: float64, 'treatment': 829 False
201 False
561 True
370 True
921 False
...
47 True
526 True
67 True
637 False
96 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: Gini (Control): 0.7658
INFO:causalml: Gini (Treatment): 0.9872
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0254
INFO:causalml: RMSE (Treatment): 0.9947
INFO:causalml: sMAPE (Control): 0.5244
INFO:causalml: sMAPE (Treatment): 0.1842
INFO:causalml: Gini (Control): 0.6910
INFO:causalml: Gini (Treatment): 0.9870
{'X': W4 W2 W1 W3 W0 X1 X0 \
461 -1.460257 -2.060113 0.196816 0.509257 -0.190118 0.640799 1.125688
27 -0.764321 0.661496 -1.554778 -0.379143 -0.596560 -1.612376 0.853551
546 -2.764439 0.366811 0.121471 0.269416 -1.306595 -0.411430 1.901790
222 -0.935723 1.269480 0.057024 -2.368038 -0.694916 -0.264277 1.826955
936 -0.594141 -0.764907 -0.392504 -0.899154 -1.017892 -2.733821 1.305824
.. ... ... ... ... ... ... ...
353 0.015998 0.982657 -0.392354 -0.194599 -1.400468 0.281264 2.355602
366 -1.330955 1.319725 1.896027 -0.476799 1.671268 1.552792 0.045233
930 0.223896 0.462045 -0.598557 -0.386784 0.146834 1.176468 -0.409971
20 -0.912271 1.216225 -0.653480 1.130985 -0.866986 0.547937 1.677859
517 -1.362621 -0.010860 -0.360578 1.211214 -0.976836 -1.004424 1.073958
X0 X1
461 1.125688 0.640799
27 0.853551 -1.612376
546 1.901790 -0.411430
222 1.826955 -0.264277
936 1.305824 -2.733821
.. ... ...
353 2.355602 0.281264
366 0.045233 1.552792
930 -0.409971 1.176468
20 1.677859 0.547937
517 1.073958 -1.004424
[1000 rows x 9 columns], 'y': 461 -6.434741
27 -3.423349
546 -11.053337
222 9.575547
936 4.998172
...
353 16.031327
366 13.879918
930 10.114187
20 14.509975
517 -4.981074
Name: y, Length: 1000, dtype: float64, 'treatment': 461 False
27 False
546 False
222 True
936 True
...
353 True
366 True
930 True
20 True
517 False
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1047
INFO:causalml: RMSE (Treatment): 1.0173
INFO:causalml: sMAPE (Control): 0.5298
INFO:causalml: sMAPE (Treatment): 0.1928
INFO:causalml: Gini (Control): 0.7360
INFO:causalml: Gini (Treatment): 0.9868
{'X': W4 W2 W1 W3 W0 X1 X0 \
879 -1.256963 2.610828 0.183906 -0.127617 -1.530665 0.406917 -0.949262
507 -1.625075 -0.163592 -1.552466 0.974451 -1.413166 -2.116304 0.715120
5 0.117539 -0.237488 -0.331980 -1.762631 0.041748 -0.904643 -0.577618
503 -1.927225 2.080508 -1.491481 0.302042 0.310731 -0.307241 1.247553
398 -0.421897 1.548984 -1.098997 0.506289 -1.730921 -1.446963 0.408468
.. ... ... ... ... ... ... ...
27 -0.754819 0.708271 -1.279052 -0.231437 -0.561031 -1.538710 1.170755
772 -1.641683 0.455094 -1.104356 1.465097 -0.395100 -1.410726 -0.320576
509 0.454215 0.351701 -0.295182 0.429296 0.286542 -1.281868 -0.422850
643 -0.714246 2.659219 -1.015225 1.523564 -3.134931 1.156423 1.157304
998 -0.208078 0.901069 -1.635665 -0.081512 -1.318741 0.756215 1.485413
X0 X1
879 -0.949262 0.406917
507 0.715120 -2.116304
5 -0.577618 -0.904643
503 1.247553 -0.307241
398 0.408468 -1.446963
.. ... ...
27 1.170755 -1.538710
772 -0.320576 -1.410726
509 -0.422850 -1.281868
643 1.157304 1.156423
998 1.485413 0.756215
[1000 rows x 9 columns], 'y': 879 2.556286
507 -8.258449
5 4.741680
503 -3.163402
398 -5.105764
...
27 -3.423349
772 3.250030
509 10.361696
643 9.118838
998 13.321122
Name: y, Length: 1000, dtype: float64, 'treatment': 879 True
507 False
5 True
503 False
398 False
...
27 False
772 True
509 True
643 True
998 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0923
INFO:causalml: RMSE (Treatment): 0.8748
INFO:causalml: sMAPE (Control): 0.5358
INFO:causalml: sMAPE (Treatment): 0.1645
INFO:causalml: Gini (Control): 0.6935
INFO:causalml: Gini (Treatment): 0.9895
{'X': W4 W2 W1 W3 W0 X1 X0 \
182 -0.858135 0.548027 0.570832 1.543022 -2.357673 1.666628 2.422103
581 -0.420050 2.640835 -1.237284 -0.816649 -1.431552 -1.135704 1.275244
381 0.220628 0.129095 -0.082455 -0.835143 -1.065214 -0.080231 -1.145132
877 -0.263394 0.773930 -0.167360 -1.809891 1.394062 1.191594 0.087068
123 -0.820337 1.260770 -0.463931 1.269620 -2.509042 1.125975 -1.084071
.. ... ... ... ... ... ... ...
413 -0.352489 1.333771 -2.830226 -0.970291 -2.868858 -0.818934 0.160747
725 -1.069626 1.185964 -2.415549 0.944403 -0.280930 1.234655 -1.314084
300 -1.442654 0.561198 -0.598452 1.170720 -1.425032 -0.104172 2.707997
533 -1.916023 2.135901 -0.882891 -0.073193 -2.437310 -1.498964 -0.956094
746 0.635679 0.256677 -0.002004 -0.305042 0.331563 0.584977 -0.708696
X0 X1
182 2.422103 1.666628
581 1.275244 -1.135704
381 -1.145132 -0.080231
877 0.087068 1.191594
123 -1.084071 1.125975
.. ... ...
413 0.160747 -0.818934
725 -1.314084 1.234655
300 2.707997 -0.104172
533 -0.956094 -1.498964
746 -0.708696 0.584977
[1000 rows x 9 columns], 'y': 182 15.277732
581 10.512753
381 2.059536
877 12.698322
123 1.168663
...
413 -10.466301
725 -3.118501
300 13.493938
533 -6.739186
746 10.903542
Name: y, Length: 1000, dtype: float64, 'treatment': 182 True
581 True
381 True
877 True
123 True
...
413 False
725 False
300 True
533 True
746 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0416
INFO:causalml: RMSE (Treatment): 1.0407
INFO:causalml: sMAPE (Control): 0.5279
INFO:causalml: sMAPE (Treatment): 0.1668
INFO:causalml: Gini (Control): 0.6798
INFO:causalml: Gini (Treatment): 0.9840
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9505
INFO:causalml: RMSE (Treatment): 0.9570
INFO:causalml: sMAPE (Control): 0.5073
INFO:causalml: sMAPE (Treatment): 0.1837
INFO:causalml: Gini (Control): 0.7110
INFO:causalml: Gini (Treatment): 0.9879
{'X': W4 W2 W1 W3 W0 X1 X0 \
521 -1.064810 2.125579 -2.096933 0.238321 -1.922263 -0.778079 -0.661939
277 -0.958657 0.357395 0.086754 -0.898277 -0.734021 -1.876077 -0.094653
161 -2.661257 1.594218 -1.232403 -1.302777 -1.473713 1.516190 2.922502
708 -0.420950 1.218293 0.079718 -0.321749 -0.314454 -1.630925 1.536317
810 -0.607251 0.596658 0.352069 0.448846 -0.316254 -0.086533 -0.948286
.. ... ... ... ... ... ... ...
549 1.102751 0.590279 -1.566217 -0.906844 0.194944 -0.075375 0.976922
735 -0.530474 0.449591 -2.149441 -0.581266 0.593925 -1.157048 2.266023
850 -1.613409 1.467119 0.187807 1.032850 -2.193383 -0.478503 2.370121
800 -2.437974 0.813644 0.292719 1.129961 0.010590 0.636060 -1.370904
282 -0.160975 -0.195619 0.574784 1.624199 -1.756967 -1.462474 0.626548
X0 X1
521 -0.661939 -0.778079
277 -0.094653 -1.876077
161 2.922502 1.516190
708 1.536317 -1.630925
810 -0.948286 -0.086533
.. ... ...
549 0.976922 -0.075375
735 2.266023 -1.157048
850 2.370121 -0.478503
800 -1.370904 0.636060
282 0.626548 -1.462474
[1000 rows x 9 columns], 'y': 521 0.541061
277 1.863805
161 -11.664097
708 12.369009
810 5.956647
...
549 15.679880
735 15.212283
850 12.795708
800 2.492589
282 7.672536
Name: y, Length: 1000, dtype: float64, 'treatment': 521 True
277 True
161 False
708 True
810 True
...
549 True
735 True
850 True
800 True
282 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
335 -1.100336 1.977221 0.607966 -0.793885 -2.545464 1.366718 0.809280
171 -0.991677 1.353156 -1.437487 -0.719049 -1.376758 0.623510 -0.261505
148 -0.250226 -0.427685 -1.350273 -0.859032 -1.316345 -1.337075 1.060074
337 -2.354606 0.835613 -1.931366 -0.876002 -0.937969 -0.123990 -0.279434
550 -0.407100 -0.483698 0.309698 -0.047278 0.531595 -1.814945 0.574206
.. ... ... ... ... ... ... ...
899 -0.628691 -0.756683 -0.238593 -1.000216 -1.325123 -0.779234 -0.059174
796 -0.102175 1.460876 -0.167504 -1.664169 -0.077747 0.248961 -0.648353
898 -1.258328 1.939644 -0.848240 1.668798 0.619521 -1.431741 2.092603
399 -1.386327 2.762234 0.245965 0.029650 1.174612 -2.486153 0.375883
982 -0.803224 0.691163 -0.389384 -0.943258 0.847790 -1.253997 1.159258
X0 X1
335 0.809280 1.366718
171 -0.261505 0.623510
148 1.060074 -1.337075
337 -0.279434 -0.123990
550 0.574206 -1.814945
.. ... ...
899 -0.059174 -0.779234
796 -0.648353 0.248961
898 2.092603 -1.431741
399 0.375883 -2.486153
982 1.159258 -1.253997
[1000 rows x 9 columns], 'y': 335 6.324474
171 2.573635
148 4.946877
337 -10.149884
550 9.910321
...
899 2.709571
796 -1.447993
898 17.331546
399 10.567009
982 12.003112
Name: y, Length: 1000, dtype: float64, 'treatment': 335 True
171 True
148 True
337 False
550 True
...
899 True
796 False
898 True
399 True
982 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0987
INFO:causalml: RMSE (Treatment): 1.0058
INFO:causalml: sMAPE (Control): 0.5550
INFO:causalml: sMAPE (Treatment): 0.1759
INFO:causalml: Gini (Control): 0.7364
INFO:causalml: Gini (Treatment): 0.9863
{'X': W4 W2 W1 W3 W0 X1 X0 \
256 -0.665575 1.778065 -0.968217 -0.127747 0.334922 -0.370859 2.847488
417 -0.457640 0.285454 -1.058043 -0.216185 -0.169154 -0.836608 1.797101
919 0.785385 1.126725 -0.775216 -0.702748 0.504256 -2.635844 0.545678
996 -3.019533 1.626102 -0.388613 1.772885 1.258386 0.954511 1.826523
821 -1.469025 1.208626 -3.567248 -0.517454 -1.519949 0.844796 -0.477846
.. ... ... ... ... ... ... ...
667 -1.941159 0.823270 -0.024040 1.252969 -0.146037 0.363587 1.403426
176 -0.863464 1.495569 0.864471 0.072182 -2.735479 -0.175786 -0.386896
761 -1.710151 -0.234718 -0.890572 -1.456842 1.121008 -0.747674 0.901646
114 -0.344432 0.510373 -1.191251 0.334169 -1.996054 -1.308779 -0.613666
132 -4.244958 1.454520 -0.853378 1.165462 -2.200121 0.261365 0.329199
X0 X1
256 2.847488 -0.370859
417 1.797101 -0.836608
919 0.545678 -2.635844
996 1.826523 0.954511
821 -0.477846 0.844796
.. ... ...
667 1.403426 0.363587
176 -0.386896 -0.175786
761 0.901646 -0.747674
114 -0.613666 -1.308779
132 0.329199 0.261365
[1000 rows x 9 columns], 'y': 256 20.538593
417 12.283023
919 12.794015
996 17.211685
821 -9.602174
...
667 11.985876
176 0.810587
761 7.959767
114 0.119504
132 -3.629107
Name: y, Length: 1000, dtype: float64, 'treatment': 256 True
417 True
919 True
996 True
821 False
...
667 True
176 True
761 True
114 True
132 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9008
INFO:causalml: RMSE (Treatment): 0.9300
INFO:causalml: sMAPE (Control): 0.5453
INFO:causalml: sMAPE (Treatment): 0.1736
INFO:causalml: Gini (Control): 0.7715
INFO:causalml: Gini (Treatment): 0.9875
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
435 -1.290773 1.787665 -0.154730 0.309899 -0.615941 1.055156 1.949821
571 0.073259 -0.265020 1.336202 0.316344 0.232892 -0.748365 1.455606
925 -0.241368 -0.555981 -1.886168 1.751812 -1.451546 -1.286078 0.058359
191 -0.167786 -0.382653 -2.050806 0.247710 -1.377576 0.097655 -0.163738
857 -0.880414 0.756512 -0.296519 -1.008379 -0.378510 -0.025587 -0.555009
.. ... ... ... ... ... ... ...
304 -0.657374 0.819624 1.589740 2.162585 0.989363 0.796753 1.805996
732 -1.854802 1.650649 -0.613165 0.707549 -0.035249 -0.823780 2.115949
469 -1.857866 0.189421 0.310381 -1.897358 -1.033174 -1.519147 1.891197
139 -1.429328 0.994971 0.445033 0.053998 0.689442 -1.102233 0.834170
405 -3.090734 -0.161113 -0.615230 -0.393858 0.470887 -1.691078 -0.777247
X0 X1
435 1.949821 1.055156
571 1.455606 -0.748365
925 0.058359 -1.286078
191 -0.163738 0.097655
857 -0.555009 -0.025587
.. ... ...
304 1.805996 0.796753
732 2.115949 -0.823780
469 1.891197 -1.519147
139 0.834170 -1.102233
405 -0.777247 -1.691078
[1000 rows x 9 columns], 'y': 435 13.857254
571 16.753939
925 4.053751
191 -5.492128
857 4.361211
...
304 22.259686
732 -3.133831
469 4.435916
139 11.778033
405 -8.503448
Name: y, Length: 1000, dtype: float64, 'treatment': 435 True
571 True
925 True
191 False
857 True
...
304 True
732 False
469 True
139 True
405 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
373 -0.586068 0.785214 -0.258682 2.335104 -0.514019 0.671037 -0.047911
740 -1.730376 -0.082488 -0.860927 1.462483 0.614116 -0.480573 2.059247
501 -1.551334 1.009595 1.256427 -0.197566 -2.084231 -0.446778 0.288796
220 0.878591 1.244577 -0.156619 0.477556 -1.101665 -1.706181 0.564847
176 -0.686087 1.487416 0.889637 0.124132 -2.654856 -0.027463 -0.529537
.. ... ... ... ... ... ... ...
975 -1.038536 0.544160 0.204063 2.023977 -0.641787 -1.154168 0.788529
783 -1.590418 1.712067 -1.071416 -2.106101 -0.628625 0.294950 0.044412
845 -1.343336 -0.556841 -1.157557 0.820337 -1.689095 0.090289 -0.518620
731 -0.748152 2.179917 -1.198134 0.162754 -0.255301 -0.187085 1.350099
437 -1.814920 2.655633 0.842024 0.082480 -1.483412 -1.248605 -0.208832
X0 X1
373 -0.047911 0.671037
740 2.059247 -0.480573
501 0.288796 -0.446778
220 0.564847 -1.706181
176 -0.529537 -0.027463
.. ... ...
975 0.788529 -1.154168
783 0.044412 0.294950
845 -0.518620 0.090289
731 1.350099 -0.187085
437 -0.208832 -1.248605
[1000 rows x 9 columns], 'y': 373 12.268099
740 15.715393
501 2.593155
220 10.878908
176 0.810587
...
975 9.860888
783 2.764437
845 -8.309502
731 13.912472
437 1.751543
Name: y, Length: 1000, dtype: float64, 'treatment': 373 True
740 True
501 True
220 True
176 True
...
975 True
783 True
845 False
731 True
437 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.2452
INFO:causalml: RMSE (Treatment): 1.0504
INFO:causalml: sMAPE (Control): 0.5990
INFO:causalml: sMAPE (Treatment): 0.1656
INFO:causalml: Gini (Control): 0.7487
INFO:causalml: Gini (Treatment): 0.9861
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1500
INFO:causalml: RMSE (Treatment): 1.0641
INFO:causalml: sMAPE (Control): 0.5799
INFO:causalml: sMAPE (Treatment): 0.1953
INFO:causalml: Gini (Control): 0.7139
INFO:causalml: Gini (Treatment): 0.9853
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
476 -0.916246 0.716053 1.561100 1.401698 -0.298811 1.040683 1.057571
96 1.086606 0.844974 -0.116830 0.902299 -1.404204 -1.070461 1.049181
350 -0.488393 1.011535 0.916039 0.266851 -0.692067 -1.712296 0.453096
247 -1.185833 0.211358 0.441802 0.973059 -0.087143 -1.599477 -0.505370
85 -1.717485 1.374249 -0.641572 -0.273738 -0.978240 -2.893886 -0.306468
.. ... ... ... ... ... ... ...
676 -1.635484 2.555525 -0.922551 1.692212 -2.022160 0.377001 0.911202
955 -0.502191 0.691452 -1.555526 1.187045 1.790498 -0.879598 1.108326
624 -2.064699 -0.396411 0.015957 1.326630 -1.316539 0.201398 1.078927
164 -2.005248 0.401852 -1.029118 0.011918 -1.026978 -1.102522 0.124741
614 -2.496101 1.064544 -0.721495 0.237056 0.136538 -0.549725 -0.119093
X0 X1
476 1.057571 1.040683
96 1.049181 -1.070461
350 0.453096 -1.712296
247 -0.505370 -1.599477
85 -0.306468 -2.893886
.. ... ...
676 0.911202 0.377001
955 1.108326 -0.879598
624 1.078927 0.201398
164 0.124741 -1.102522
614 -0.119093 -0.549725
[1000 rows x 9 columns], 'y': 476 13.134949
96 14.140134
350 8.901755
247 3.320266
85 -0.384362
...
676 8.554497
955 18.503792
624 5.810979
164 1.757613
614 -5.992837
Name: y, Length: 1000, dtype: float64, 'treatment': 476 True
96 True
350 True
247 True
85 True
...
676 True
955 True
624 True
164 True
614 False
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0893
INFO:causalml: RMSE (Treatment): 1.0560
INFO:causalml: sMAPE (Control): 0.5163
INFO:causalml: sMAPE (Treatment): 0.1890
INFO:causalml: Gini (Control): 0.6924
INFO:causalml: Gini (Treatment): 0.9841
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1185
INFO:causalml: RMSE (Treatment): 1.0528
INFO:causalml: sMAPE (Control): 0.4944
INFO:causalml: sMAPE (Treatment): 0.1829
INFO:causalml: Gini (Control): 0.6812
INFO:causalml: Gini (Treatment): 0.9845
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0523
INFO:causalml: RMSE (Treatment): 1.0966
INFO:causalml: sMAPE (Control): 0.5335
INFO:causalml: sMAPE (Treatment): 0.1846
INFO:causalml: Gini (Control): 0.7403
INFO:causalml: Gini (Treatment): 0.9842
{'X': W4 W2 W1 W3 W0 X1 X0 \
656 -1.365084 1.819157 2.098686 0.874874 1.299507 -0.600109 0.545343
607 -0.706812 -0.877614 -0.315875 -0.408886 -0.483012 -0.921114 -0.109378
342 -1.679826 -0.614213 -1.995008 -0.124394 0.000163 -1.293688 0.397625
843 -1.884440 2.477489 1.248540 1.445514 -0.693600 -1.420867 -0.105174
574 -0.478880 0.360457 -1.256787 1.173270 -0.719220 -1.092105 -0.236187
.. ... ... ... ... ... ... ...
348 -0.907488 1.956598 -1.850559 0.326344 -1.404297 -1.670213 1.590651
181 1.288764 0.127013 -0.064689 0.743168 -0.541843 -0.899438 0.210216
126 -0.216085 2.137236 0.513100 -0.728803 -0.439462 -1.680363 0.199879
804 -2.459387 0.782972 -0.055967 1.354856 -1.178010 -1.081715 0.546584
741 -0.609507 2.797551 -1.293786 -0.905862 -1.302123 -0.453713 0.131056
X0 X1
656 0.545343 -0.600109
607 -0.109378 -0.921114
342 0.397625 -1.293688
843 -0.105174 -1.420867
574 -0.236187 -1.092105
.. ... ...
348 1.590651 -1.670213
181 0.210216 -0.899438
126 0.199879 -1.680363
804 0.546584 -1.081715
741 0.131056 -0.453713
[1000 rows x 9 columns], 'y': 656 15.632059
607 3.571733
342 -6.856146
843 6.032900
574 5.633909
...
348 9.469476
181 13.569762
126 9.175909
804 2.906483
741 5.593102
Name: y, Length: 1000, dtype: float64, 'treatment': 656 True
607 True
342 False
843 True
574 True
...
348 True
181 True
126 True
804 True
741 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
766 -0.756667 0.367923 1.153857 1.799840 0.228541 -0.160941 0.239082
295 -0.920244 0.816180 -1.724668 0.524165 -1.332265 0.253598 1.161850
413 -0.358793 1.190467 -2.753001 -1.067620 -3.125181 -0.715718 -0.055546
293 -1.984653 -1.143055 -1.910437 -1.334067 -0.775120 -1.530153 0.337544
669 -0.053879 0.915218 -1.183049 0.444186 0.486040 -2.352234 -0.881775
.. ... ... ... ... ... ... ...
475 -1.420390 -1.741700 -1.396914 -1.520924 -0.835104 -0.095234 2.793876
136 -1.755542 -0.374752 -1.002181 1.103858 0.006548 0.715375 -0.163707
421 -2.105743 0.172084 -0.756788 -0.443594 -0.113048 0.950566 -2.126405
857 -0.822371 0.714026 -0.458390 -0.895779 -0.553540 0.003880 -0.725634
977 -1.684132 0.534968 -1.003727 0.342221 0.432128 -0.191376 1.501638
X0 X1
766 0.239082 -0.160941
295 1.161850 0.253598
413 -0.055546 -0.715718
293 0.337544 -1.530153
669 -0.881775 -2.352234
.. ... ...
475 2.793876 -0.095234
136 -0.163707 0.715375
421 -2.126405 0.950566
857 -0.725634 0.003880
977 1.501638 -0.191376
[1000 rows x 9 columns], 'y': 766 12.119461
295 9.933260
413 -10.466301
293 -11.609205
669 6.961904
...
475 -10.586297
136 -4.977571
421 -2.608507
857 4.361211
977 -3.568162
Name: y, Length: 1000, dtype: float64, 'treatment': 766 True
295 True
413 False
293 False
669 True
...
475 False
136 False
421 True
857 True
977 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
716 -1.780908 1.296653 -1.506171 -1.069888 1.365460 -0.138733 0.313991
932 -1.299847 0.588967 -0.107455 0.283732 -1.323747 0.130964 -0.733880
582 -1.949519 1.287445 -0.375304 1.762713 -0.174648 -0.675732 0.814971
28 0.228184 -1.669546 -0.676058 -1.615774 -0.315091 -0.476678 -0.171973
761 -1.902200 -0.095299 -0.949139 -1.353268 0.986338 -0.829036 0.806286
.. ... ... ... ... ... ... ...
207 -1.325801 1.102182 1.192057 0.460207 1.410201 -2.357977 0.753458
914 -0.005436 1.224618 0.435307 -0.579745 -0.861379 0.677591 0.691308
321 -2.029734 -0.232718 0.728393 0.233231 -0.613002 -0.260258 0.602071
774 -0.740094 0.123906 0.391809 -0.824587 0.195687 -1.391723 0.153809
41 0.107240 -0.096356 -0.831740 2.298990 -0.212071 -0.017084 0.168104
X0 X1
716 0.313991 -0.138733
932 -0.733880 0.130964
582 0.814971 -0.675732
28 -0.171973 -0.476678
761 0.806286 -0.829036
.. ... ...
207 0.753458 -2.357977
914 0.691308 0.677591
321 0.602071 -0.260258
774 0.153809 -1.391723
41 0.168104 -0.017084
[1000 rows x 9 columns], 'y': 716 9.358799
932 1.654133
582 10.549091
28 4.753158
761 7.959767
...
207 13.068250
914 12.801840
321 -6.946700
774 6.080336
41 12.011428
Name: y, Length: 1000, dtype: float64, 'treatment': 716 True
932 True
582 True
28 True
761 True
...
207 True
914 True
321 False
774 True
41 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.2193
INFO:causalml: RMSE (Treatment): 0.9058
INFO:causalml: sMAPE (Control): 0.5661
INFO:causalml: sMAPE (Treatment): 0.1605
INFO:causalml: Gini (Control): 0.6898
INFO:causalml: Gini (Treatment): 0.9892
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0219
INFO:causalml: RMSE (Treatment): 0.8973
INFO:causalml: sMAPE (Control): 0.5490
INFO:causalml: sMAPE (Treatment): 0.1593
{'X': W4 W2 W1 W3 W0 X1 X0 \
535 -0.408946 -0.549911 -0.438350 0.654294 -0.431326 -1.569354 2.919030
813 -2.613072 1.682590 -1.177321 0.400974 0.448995 -0.975483 0.266881
702 1.737639 1.568111 -0.021695 -0.401659 1.804794 0.047483 0.487667
520 -1.447681 0.708456 -0.474129 -0.049508 -0.575110 -0.862941 1.229650
489 -0.389307 -1.466011 -0.718566 0.734077 0.085211 -1.077799 -1.288199
.. ... ... ... ... ... ... ...
961 -1.446214 1.654762 -0.271929 1.143991 -0.885921 -1.901416 0.019326
57 0.172187 0.239910 -0.921379 0.628416 0.606811 -0.931338 2.313877
541 0.332641 -0.475919 -0.267263 -1.407782 0.013615 -0.561815 -0.244886
659 -0.818998 2.868143 -0.850733 2.637302 -1.828988 -0.761172 -0.675929
877 -0.220138 0.794346 -0.213728 -1.750195 1.452935 1.435132 -0.171223
X0 X1
535 2.919030 -1.569354
813 0.266881 -0.975483
702 0.487667 0.047483
520 1.229650 -0.862941
489 -1.288199 -1.077799
.. ... ...
961 0.019326 -1.901416
57 2.313877 -0.931338
541 -0.244886 -0.561815
659 -0.675929 -0.761172
877 -0.171223 1.435132
[1000 rows x 9 columns], 'y': 535 16.319324
813 5.390940
702 23.877017
520 -5.145441
489 2.992182
...
961 4.732956
57 18.788397
541 5.970889
659 4.772285
877 12.698322
Name: y, Length: 1000, dtype: float64, 'treatment': 535 True
813 True
702 True
520 False
489 True
...
961 True
57 True
541 True
659 True
877 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
809 -1.752726 1.478834 0.359537 1.257853 -1.355993 -0.610185 0.942202
474 -0.345282 2.676627 -0.363979 0.739986 1.029841 -0.808572 0.177291
51 -0.311615 0.463675 1.315166 -0.177182 -0.411103 -0.774316 -0.120261
706 -0.692079 2.126244 0.262442 0.057324 0.769064 -0.869747 2.342587
42 0.652502 0.343937 -0.589744 1.123646 0.894766 0.882823 0.656313
.. ... ... ... ... ... ... ...
519 -1.076340 1.531144 -0.136154 -0.171633 -1.209391 -0.787394 0.436260
982 -0.838780 0.578530 -0.508228 -0.862035 0.874482 -1.286068 1.319914
736 -0.812325 1.159239 -1.139383 1.176134 -1.104442 -1.210979 0.111341
806 -0.847931 -0.003755 0.040395 0.548220 -0.999150 -2.048184 1.979963
811 -1.703399 0.515531 -1.691708 1.993570 -0.182223 -2.128436 1.939605
X0 X1
809 0.942202 -0.610185
474 0.177291 -0.808572
51 -0.120261 -0.774316
706 2.342587 -0.869747
42 0.656313 0.882823
.. ... ...
519 0.436260 -0.787394
982 1.319914 -1.286068
736 0.111341 -1.210979
806 1.979963 -2.048184
811 1.939605 -2.128436
[1000 rows x 9 columns], 'y': 809 7.084273
474 14.285230
51 8.374283
706 19.485830
42 19.574715
...
519 6.513308
982 12.003112
736 5.459094
806 11.154196
811 10.541175
Name: y, Length: 1000, dtype: float64, 'treatment': 809 True
474 True
51 True
706 True
42 True
...
519 True
982 True
736 True
806 True
811 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: Gini (Control): 0.7354
INFO:causalml: Gini (Treatment): 0.9894
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9566
INFO:causalml: RMSE (Treatment): 0.9046
INFO:causalml: sMAPE (Control): 0.5404
INFO:causalml: sMAPE (Treatment): 0.1517
INFO:causalml: Gini (Control): 0.7800
INFO:causalml: Gini (Treatment): 0.9892
{'X': W4 W2 W1 W3 W0 X1 X0 \
710 -0.885544 3.109400 -1.161211 -0.183391 -0.929634 -0.717760 -0.422444
288 -1.778829 1.792842 0.514340 0.704523 -1.436816 0.250296 0.553171
21 -0.748560 0.992715 -0.587886 1.191375 0.068951 -1.902454 -0.219831
852 -3.079856 0.894105 -1.545568 0.883254 0.925119 -1.911790 0.642795
605 -0.743595 1.049269 -1.274067 1.230038 -0.519646 -1.730869 0.754537
.. ... ... ... ... ... ... ...
61 -0.611891 0.230504 -0.106735 0.888671 -1.792676 -2.140587 -1.199169
236 -0.823569 1.054378 0.015185 -1.300129 -1.944497 0.868855 0.267289
385 -0.047892 -0.133264 -0.328396 0.389706 -1.938165 -1.366609 -1.458593
102 -0.272519 -0.441834 -1.705100 1.615818 0.227272 -0.903417 1.048783
818 -2.314737 0.952842 -0.240204 0.218917 -2.342249 -0.645204 1.335878
X0 X1
710 -0.422444 -0.717760
288 0.553171 0.250296
21 -0.219831 -1.902454
852 0.642795 -1.911790
605 0.754537 -1.730869
.. ... ...
61 -1.199169 -2.140587
236 0.267289 0.868855
385 -1.458593 -1.366609
102 1.048783 -0.903417
818 1.335878 -0.645204
[1000 rows x 9 columns], 'y': 710 5.904376
288 5.235864
21 6.406231
852 4.981610
605 -1.888067
...
61 -3.292629
236 4.765758
385 -1.265529
102 12.024923
818 -11.770683
Name: y, Length: 1000, dtype: float64, 'treatment': 710 True
288 True
21 True
852 True
605 False
...
61 True
236 True
385 True
102 True
818 False
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0569
INFO:causalml: RMSE (Treatment): 0.9878
INFO:causalml: sMAPE (Control): 0.5790
INFO:causalml: sMAPE (Treatment): 0.1811
INFO:causalml: Gini (Control): 0.7231
INFO:causalml: Gini (Treatment): 0.9886
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0845
{'X': W4 W2 W1 W3 W0 X1 X0 \
358 -1.618982 0.336568 -0.776039 1.448581 -1.102834 -0.364277 0.374769
540 -1.561058 2.046827 -0.447731 -0.203809 2.188471 0.651892 1.592926
74 -1.264685 -0.089928 -2.538475 -2.032437 1.258205 -2.129692 1.397599
189 0.623183 0.339064 1.379526 -0.573508 -3.246150 -0.459409 1.117661
122 -3.033143 -0.118046 -1.231457 0.914404 0.023980 -1.772121 0.337744
.. ... ... ... ... ... ... ...
223 -0.861923 0.334306 0.352111 1.762110 -1.820752 -1.139081 0.854460
254 -1.269406 -0.739805 -1.201137 0.641957 0.176942 -0.232125 -1.387830
493 -0.951445 2.289435 -1.354908 0.358001 -0.221044 -0.014761 -0.799413
883 -1.192269 0.013901 -0.092697 -0.181750 -1.393782 1.118679 0.530328
26 0.006493 -0.018154 0.263089 2.895273 -0.498851 -2.131243 2.267322
X0 X1
358 0.374769 -0.364277
540 1.592926 0.651892
74 1.397599 -2.129692
189 1.117661 -0.459409
122 0.337744 -1.772121
.. ... ...
223 0.854460 -1.139081
254 -1.387830 -0.232125
493 -0.799413 -0.014761
883 0.530328 1.118679
26 2.267322 -2.131243
[1000 rows x 9 columns], 'y': 358 3.577322
540 19.517995
74 8.688916
189 5.702358
122 -8.281570
...
223 6.636087
254 0.689958
493 4.987087
883 5.901248
26 17.468518
Name: y, Length: 1000, dtype: float64, 'treatment': 358 True
540 True
74 True
189 True
122 False
...
223 True
254 True
493 True
883 True
26 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
240 -1.263348 1.162763 0.105228 1.205755 -0.119909 -1.028827 -0.167676
498 0.810539 1.373755 0.219523 0.539263 0.138168 -0.144650 0.582504
529 0.630397 -0.221831 -0.178235 -0.483179 -2.770740 -1.892844 0.415426
457 -1.354105 1.457178 -0.777315 1.883983 -2.976922 -1.550290 -0.125306
2 -1.608387 -0.291487 -0.839419 -0.258104 -1.204207 -0.514901 -0.399287
.. ... ... ... ... ... ... ...
929 -1.676347 1.563545 -0.515152 0.216150 -1.656749 0.514116 -0.605672
197 -1.603567 0.713467 -2.349028 2.255348 -1.048802 -0.635757 1.187067
750 -0.265670 2.101574 -2.127944 -0.954356 0.096180 0.364974 0.481835
349 -1.826042 1.028645 -0.118728 0.401023 -0.059445 -0.562672 1.065773
477 -3.013714 0.861584 -0.071117 1.361774 -1.356168 -0.940111 1.860255
X0 X1
240 -0.167676 -1.028827
498 0.582504 -0.144650
529 0.415426 -1.892844
457 -0.125306 -1.550290
2 -0.399287 -0.514901
.. ... ...
929 -0.605672 0.514116
197 1.187067 -0.635757
750 0.481835 0.364974
349 1.065773 -0.562672
477 1.860255 -0.940111
[1000 rows x 9 columns], 'y': 240 6.512254
498 17.581110
529 3.288937
457 -8.028104
2 -9.777346
...
929 0.739416
197 -4.810420
750 -1.151925
349 10.315484
477 7.037455
Name: y, Length: 1000, dtype: float64, 'treatment': 240 True
498 True
529 True
457 False
2 False
...
929 True
197 False
750 False
349 True
477 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: RMSE (Treatment): 0.9745
INFO:causalml: sMAPE (Control): 0.5396
INFO:causalml: sMAPE (Treatment): 0.1887
INFO:causalml: Gini (Control): 0.7519
INFO:causalml: Gini (Treatment): 0.9890
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0117
INFO:causalml: RMSE (Treatment): 0.9768
INFO:causalml: sMAPE (Control): 0.4914
INFO:causalml: sMAPE (Treatment): 0.1746
INFO:causalml: Gini (Control): 0.7261
INFO:causalml: Gini (Treatment): 0.9861
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8418
INFO:causalml: RMSE (Treatment): 1.0209
INFO:causalml: sMAPE (Control): 0.4726
INFO:causalml: sMAPE (Treatment): 0.1868
{'X': W4 W2 W1 W3 W0 X1 X0 \
273 -0.677619 1.186574 -0.958007 1.376116 -1.854810 -0.737435 -2.090940
597 -0.418731 0.117396 -1.426846 2.216330 -0.924005 0.298973 -0.106910
840 0.815459 0.748352 0.500100 1.252534 -0.255523 -0.079447 0.564455
24 -0.617694 0.450154 -1.288916 1.397034 -2.702385 -0.985369 0.468185
520 -1.383487 0.444018 -0.638238 0.000878 -0.541441 -0.933725 1.018526
.. ... ... ... ... ... ... ...
111 1.145629 0.629617 -0.273566 1.928849 -0.574426 -0.809487 0.827795
990 0.189329 0.975162 -0.079997 0.203722 -1.239292 0.415439 -0.101237
669 0.261455 1.204097 -0.832557 0.498671 0.600173 -2.208832 -0.891973
935 -1.605048 0.441036 0.273670 1.925556 -1.113346 0.059029 0.672250
569 -2.807598 0.429742 0.681303 2.110926 1.443053 -1.329212 2.269497
X0 X1
273 -2.090940 -0.737435
597 -0.106910 0.298973
840 0.564455 -0.079447
24 0.468185 -0.985369
520 1.018526 -0.933725
.. ... ...
111 0.827795 -0.809487
990 -0.101237 0.415439
669 -0.891973 -2.208832
935 0.672250 0.059029
569 2.269497 -1.329212
[1000 rows x 9 columns], 'y': 273 -2.115646
597 -1.143963
840 15.748095
24 -7.244556
520 -5.145441
...
111 16.735009
990 8.714440
669 6.961904
935 7.518694
569 16.043709
Name: y, Length: 1000, dtype: float64, 'treatment': 273 True
597 False
840 True
24 False
520 False
...
111 True
990 True
669 True
935 True
569 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
712 -0.414558 0.791334 -0.285844 1.287638 -0.036979 -0.636977 -0.815817
391 -0.372872 1.188105 1.332948 -1.096777 0.691069 0.171162 0.169036
20 -1.011585 1.257003 -0.535764 1.111335 -0.895269 0.514914 1.672974
470 -0.162220 1.935118 -0.011814 -0.925369 -2.133829 -0.933173 -1.040196
314 -0.880874 -0.400956 -2.328729 0.380658 0.016809 -2.711706 1.361550
.. ... ... ... ... ... ... ...
775 -2.373011 1.748196 -1.426159 0.981177 -1.145867 -0.033774 0.340850
610 -0.587750 1.485507 0.022402 0.026463 -1.269696 -0.553590 1.054406
426 -0.510025 1.271371 -0.839987 -0.487718 0.846988 -0.539433 -0.390435
512 -1.207671 1.719265 1.811797 3.102993 -1.534562 -1.029973 0.170662
940 1.529456 -0.177965 -1.014976 0.360544 -0.351084 -1.262187 0.175720
X0 X1
712 -0.815817 -0.636977
391 0.169036 0.171162
20 1.672974 0.514914
470 -1.040196 -0.933173
314 1.361550 -2.711706
.. ... ...
775 0.340850 -0.033774
610 1.054406 -0.553590
426 -0.390435 -0.539433
512 0.170662 -1.029973
940 0.175720 -1.262187
[1000 rows x 9 columns], 'y': 712 6.780320
391 13.502571
20 14.509975
470 -0.021734
314 -3.811119
...
775 -7.934090
610 9.248446
426 8.947595
512 8.367137
940 12.297833
Name: y, Length: 1000, dtype: float64, 'treatment': 712 True
391 True
20 True
470 True
314 False
...
775 False
610 True
426 True
512 True
940 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: Gini (Control): 0.7374
INFO:causalml: Gini (Treatment): 0.9848
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0460
INFO:causalml: RMSE (Treatment): 0.9925
INFO:causalml: sMAPE (Control): 0.5278
INFO:causalml: sMAPE (Treatment): 0.1729
INFO:causalml: Gini (Control): 0.7357
INFO:causalml: Gini (Treatment): 0.9855
{'X': W4 W2 W1 W3 W0 X1 X0 \
574 -0.628170 0.490047 -0.998970 1.114067 -0.634946 -0.977042 -0.135971
279 -2.042524 -0.515422 -0.001494 0.585008 -0.007506 0.718590 1.220915
4 -1.318715 0.653079 -2.000279 0.498075 -0.156856 -0.883068 0.497926
346 -1.629199 0.177398 -0.054513 1.040503 0.789129 -0.768061 0.556015
311 -0.500132 -0.676690 0.496760 -0.867403 -1.887667 0.095543 1.170573
.. ... ... ... ... ... ... ...
165 0.701052 -0.293887 1.099465 -2.275733 -1.154126 -1.597081 0.433060
186 -0.713055 3.862460 0.200335 1.622113 -1.025908 -0.071922 0.803886
432 -1.883946 0.320996 0.350803 0.548764 0.239354 -0.240906 0.080076
363 -1.458807 1.554723 -0.100304 -0.726284 -0.183216 -2.651428 1.761662
256 -0.520119 1.788996 -0.945605 0.029491 0.376885 -0.323118 2.874166
X0 X1
574 -0.135971 -0.977042
279 1.220915 0.718590
4 0.497926 -0.883068
346 0.556015 -0.768061
311 1.170573 0.095543
.. ... ...
165 0.433060 -1.597081
186 0.803886 -0.071922
432 0.080076 -0.240906
363 1.761662 -2.651428
256 2.874166 -0.323118
[1000 rows x 9 columns], 'y': 574 5.633909
279 -6.155145
4 -4.253140
346 10.270986
311 6.548500
...
165 4.362892
186 14.738530
432 6.046513
363 8.937908
256 20.538593
Name: y, Length: 1000, dtype: float64, 'treatment': 574 True
279 False
4 False
346 True
311 True
...
165 True
186 True
432 True
363 True
256 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0604
INFO:causalml: RMSE (Treatment): 0.9944
INFO:causalml: sMAPE (Control): 0.5353
INFO:causalml: sMAPE (Treatment): 0.1628
INFO:causalml: Gini (Control): 0.7639
INFO:causalml: Gini (Treatment): 0.9878
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1445
INFO:causalml: RMSE (Treatment): 0.9943
INFO:causalml: sMAPE (Control): 0.5612
INFO:causalml: sMAPE (Treatment): 0.1686
INFO:causalml: Gini (Control): 0.7414
INFO:causalml: Gini (Treatment): 0.9876
{'X': W4 W2 W1 W3 W0 X1 X0 \
589 -1.748176 -0.155602 -1.017759 -0.269662 -1.463838 0.574539 -0.268489
34 0.308690 2.301209 0.550368 -0.173328 0.312406 1.777416 1.357787
925 -0.454416 -0.506845 -1.768763 1.827165 -1.341544 -1.475720 -0.015125
500 -0.845036 -0.731265 0.645794 1.354525 1.237255 -0.111407 1.537868
646 -0.583674 1.079458 0.046224 1.641185 -1.743680 -0.669495 1.053700
.. ... ... ... ... ... ... ...
793 -0.493825 1.869213 -0.304250 -1.310964 -1.740684 -0.303164 1.395958
189 0.331711 0.200259 1.290837 -0.775730 -3.102590 -0.388644 0.719845
847 -0.727785 1.444691 0.778506 2.582550 -2.760931 -1.801513 -0.277971
585 0.992384 0.557539 -0.314856 0.502749 0.252605 0.635638 0.314569
557 0.221457 -0.260211 0.145958 1.385913 -1.584558 -1.443598 -0.270600
X0 X1
589 -0.268489 0.574539
34 1.357787 1.777416
925 -0.015125 -1.475720
500 1.537868 -0.111407
646 1.053700 -0.669495
.. ... ...
793 1.395958 -0.303164
189 0.719845 -0.388644
847 -0.277971 -1.801513
585 0.314569 0.635638
557 -0.270600 -1.443598
[1000 rows x 9 columns], 'y': 589 -10.258505
34 22.166660
925 4.053751
500 17.859054
646 9.399353
...
793 9.029191
189 5.702358
847 2.927082
585 17.683899
557 5.886610
Name: y, Length: 1000, dtype: float64, 'treatment': 589 False
34 True
925 True
500 True
646 True
...
793 True
189 True
847 True
585 True
557 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
670 -0.277250 -0.210543 -0.138522 0.102428 0.056937 -0.175638 0.013252
513 -0.744367 1.544602 -0.662760 2.360959 3.314790 -0.465990 0.294035
566 -0.642524 0.944299 -1.173029 0.761402 -0.130403 -1.047601 0.808957
82 -1.511905 0.757699 -0.695620 1.209082 -0.799840 -0.648411 -0.917466
720 -0.172043 0.454702 -1.152236 -1.934944 -1.645816 0.040783 2.268147
.. ... ... ... ... ... ... ...
624 -1.991574 -0.338454 -0.082311 1.218307 -1.216017 0.236149 1.025945
85 -1.707670 1.488772 -0.541956 -0.093565 -1.123841 -2.815247 -0.273263
802 -0.876361 0.328210 1.791160 1.911211 -1.427104 -1.932645 0.590992
256 -0.672850 1.743199 -0.845564 0.204138 0.135315 -0.465105 3.182018
686 -1.425466 -0.586366 -0.500467 2.146743 -1.612155 0.644111 0.201290
X0 X1
670 0.013252 -0.175638
513 0.294035 -0.465990
566 0.808957 -1.047601
82 -0.917466 -0.648411
720 2.268147 0.040783
.. ... ...
624 1.025945 0.236149
85 -0.273263 -2.815247
802 0.590992 -1.932645
256 3.182018 -0.465105
686 0.201290 0.644111
[1000 rows x 9 columns], 'y': 670 8.500958
513 22.411994
566 11.504404
82 0.633027
720 11.018665
...
624 5.810979
85 -0.384362
802 7.188003
256 20.538593
686 4.432389
Name: y, Length: 1000, dtype: float64, 'treatment': 670 True
513 True
566 True
82 True
720 True
...
624 True
85 True
802 True
256 True
686 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0158
INFO:causalml: RMSE (Treatment): 0.9613
INFO:causalml: sMAPE (Control): 0.5428
INFO:causalml: sMAPE (Treatment): 0.1827
INFO:causalml: Gini (Control): 0.7311
INFO:causalml: Gini (Treatment): 0.9887
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
294 0.652011 0.298007 -0.418953 0.292428 -0.732963 -1.633518 0.181559
839 -0.412169 0.833947 -0.603844 0.891018 0.087956 -0.819805 0.059602
397 0.740199 0.400858 -1.595990 -0.603329 -0.574721 -0.509353 0.696423
838 -0.740006 -0.058434 -0.927145 0.910512 -0.777889 -1.034288 -0.481204
473 -2.185995 3.010844 0.110059 0.565874 -1.589594 -2.013939 0.488150
.. ... ... ... ... ... ... ...
69 -1.483962 0.528791 -1.403685 1.730814 -1.962470 0.895590 2.864753
308 -1.362757 0.359206 0.455134 0.677304 1.099989 -0.654966 0.653793
585 0.879539 0.642240 -0.066938 0.411457 -0.063654 0.460095 0.641935
60 0.288490 -0.246400 -0.063626 1.811323 -1.230966 1.056647 -0.921207
878 -1.071925 2.714481 -2.157851 1.105897 -0.013140 -0.774942 0.812385
X0 X1
294 0.181559 -1.633518
839 0.059602 -0.819805
397 0.696423 -0.509353
838 -0.481204 -1.034288
473 0.488150 -2.013939
.. ... ...
69 2.864753 0.895590
308 0.653793 -0.654966
585 0.641935 0.460095
60 -0.921207 1.056647
878 0.812385 -0.774942
[1000 rows x 9 columns], 'y': 294 8.885443
839 10.718157
397 12.505105
838 3.145267
473 2.964870
...
69 14.310653
308 12.604981
585 17.683899
60 6.681242
878 11.079847
Name: y, Length: 1000, dtype: float64, 'treatment': 294 True
839 True
397 True
838 True
473 True
...
69 True
308 True
585 True
60 True
878 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
528 -1.299357 2.085097 -0.391547 0.457171 -1.708455 0.655051 1.011679
304 -0.683685 0.803297 1.483699 2.148691 0.979045 1.007386 1.610230
681 -0.792822 1.511898 0.728455 -0.982430 1.296513 -0.075802 1.899100
578 -0.435146 -0.528440 -0.535245 -0.909243 -0.449900 -0.174179 0.636845
462 -1.007114 1.121916 -0.135373 -0.093987 0.835789 -0.091912 -0.269468
.. ... ... ... ... ... ... ...
292 -2.719957 1.122903 -0.402724 0.686720 -1.560917 0.788547 0.215067
610 -0.710158 1.637766 0.101329 -0.160697 -1.425310 -0.568631 1.076851
871 -1.592522 -0.440663 -2.352130 -0.994201 -0.403635 -0.702024 -0.783500
133 -2.033771 3.169595 0.556234 0.158380 1.204623 0.987751 1.142136
500 -0.779020 -0.811585 0.655207 1.303179 1.124806 -0.213754 1.466213
X0 X1
528 1.011679 0.655051
304 1.610230 1.007386
681 1.899100 -0.075802
578 0.636845 -0.174179
462 -0.269468 -0.091912
.. ... ...
292 0.215067 0.788547
610 1.076851 -0.568631
871 -0.783500 -0.702024
133 1.142136 0.987751
500 1.466213 -0.213754
[1000 rows x 9 columns], 'y': 528 8.156158
304 22.259686
681 18.090454
578 -2.946371
462 9.112148
...
292 -10.155301
610 9.248446
871 -8.791062
133 16.345538
500 17.859054
Name: y, Length: 1000, dtype: float64, 'treatment': 528 True
304 True
681 True
578 False
462 True
...
292 False
610 True
871 False
133 True
500 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1122
INFO:causalml: RMSE (Treatment): 0.9994
INFO:causalml: sMAPE (Control): 0.5167
INFO:causalml: sMAPE (Treatment): 0.1760
INFO:causalml: Gini (Control): 0.7523
INFO:causalml: Gini (Treatment): 0.9873
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0266
INFO:causalml: RMSE (Treatment): 1.0330
INFO:causalml: sMAPE (Control): 0.5590
INFO:causalml: sMAPE (Treatment): 0.2011
INFO:causalml: Gini (Control): 0.7985
INFO:causalml: Gini (Treatment): 0.9884
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9877
INFO:causalml: RMSE (Treatment): 1.0373
INFO:causalml: sMAPE (Control): 0.5431
INFO:causalml: sMAPE (Treatment): 0.1665
INFO:causalml: Gini (Control): 0.7361
INFO:causalml: Gini (Treatment): 0.9850
{'X': W4 W2 W1 W3 W0 X1 X0 \
72 -1.947483 -0.962961 -1.120901 -0.939085 -1.343606 -0.303198 0.063538
503 -2.046887 1.940449 -1.561164 0.401595 0.508324 -0.415936 1.012491
58 -0.709985 1.240568 0.630926 -0.459984 -0.993976 -0.669026 0.683581
857 -0.857882 0.661107 -0.166046 -1.069666 -0.415578 -0.026838 -0.309020
875 -2.420560 0.087914 0.299755 0.670579 -0.455537 0.289669 -0.663331
.. ... ... ... ... ... ... ...
101 -1.360162 -0.844073 -1.223409 -1.144797 -0.060488 -1.554531 -0.567665
505 -2.457799 0.798147 0.680603 -0.221115 0.916495 -1.643212 1.350440
1 -0.581011 0.661790 -1.094139 1.705350 -1.125393 0.910010 0.590032
965 -0.112124 2.114344 -1.426137 0.314121 -0.771549 -0.548006 3.069445
70 -0.733554 1.753741 -1.894252 -1.244993 0.873740 -0.934582 2.364144
X0 X1
72 0.063538 -0.303198
503 1.012491 -0.415936
58 0.683581 -0.669026
857 -0.309020 -0.026838
875 -0.663331 0.289669
.. ... ...
101 -0.567665 -1.554531
505 1.350440 -1.643212
1 0.590032 0.910010
965 3.069445 -0.548006
70 2.364144 -0.934582
[1000 rows x 9 columns], 'y': 72 -12.586391
503 -3.163402
58 -3.753323
857 4.361211
875 1.205333
...
101 -1.913847
505 8.711479
1 11.125450
965 19.735711
70 15.668385
Name: y, Length: 1000, dtype: float64, 'treatment': 72 False
503 False
58 False
857 True
875 True
...
101 True
505 True
1 True
965 True
70 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
388 -1.737764 0.579226 -0.996179 0.571709 0.179947 0.265540 1.413841
721 0.151053 -0.186372 -2.078046 0.489469 -0.482097 -1.560702 0.955690
530 -0.970691 -0.230353 -1.122322 0.705896 -0.676484 -1.535906 1.770396
375 -1.706684 -0.608418 -0.324004 -0.367281 -0.953427 -1.326523 1.412785
795 -1.193762 1.727405 -1.310480 -0.078728 0.061590 0.338880 -0.823927
.. ... ... ... ... ... ... ...
784 -1.361975 0.925987 -1.238230 0.154941 -0.219589 2.112740 1.850467
706 -0.579411 2.152504 0.049398 -0.124011 0.829518 -0.821826 2.406820
452 -1.161144 1.447375 0.366940 1.502686 -0.832247 -2.464888 0.619286
250 -2.076800 2.575995 -3.396775 0.000262 0.176806 -0.916428 -0.759909
401 -1.900223 1.367527 -1.583811 1.389221 -0.270817 0.195192 0.439579
X0 X1
388 1.413841 0.265540
721 0.955690 -1.560702
530 1.770396 -1.535906
375 1.412785 -1.326523
795 -0.823927 0.338880
.. ... ...
784 1.850467 2.112740
706 2.406820 -0.821826
452 0.619286 -2.464888
250 -0.759909 -0.916428
401 0.439579 0.195192
[1000 rows x 9 columns], 'y': 388 -4.782170
721 9.936280
530 10.101463
375 3.740574
795 5.028396
...
784 14.827481
706 19.485830
452 7.577603
250 2.593009
401 7.798611
Name: y, Length: 1000, dtype: float64, 'treatment': 388 False
721 True
530 True
375 True
795 True
...
784 True
706 True
452 True
250 True
401 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9472
INFO:causalml: RMSE (Treatment): 1.0280
INFO:causalml: sMAPE (Control): 0.5266
INFO:causalml: sMAPE (Treatment): 0.1841
INFO:causalml: Gini (Control): 0.7202
INFO:causalml: Gini (Treatment): 0.9863
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1008
INFO:causalml: RMSE (Treatment): 1.0163
INFO:causalml: sMAPE (Control): 0.5614
INFO:causalml: sMAPE (Treatment): 0.1746
INFO:causalml: Gini (Control): 0.7255
INFO:causalml: Gini (Treatment): 0.9873
{'X': W4 W2 W1 W3 W0 X1 X0 \
575 -1.604112 1.420476 -0.119304 2.071894 -1.150966 -0.098560 -1.312888
145 -2.738138 1.417467 -0.765806 0.714971 0.420035 0.129769 0.212606
801 -0.175570 1.353509 -0.480641 -0.622820 1.012828 -1.661558 0.661143
890 -1.229726 2.226561 -0.836272 -0.359287 -0.680700 -0.737701 -0.350118
338 0.185464 2.399160 -0.341294 0.318392 0.001034 -1.870320 1.383703
.. ... ... ... ... ... ... ...
87 -1.335835 1.166508 -2.310867 1.215919 0.564484 0.080287 -0.101429
396 -0.179289 -2.035594 -1.104917 -1.327889 -1.528992 0.540613 0.405879
535 -0.407648 -0.494758 -0.724853 0.480031 -0.544243 -1.247736 2.925960
853 -0.576296 1.875702 -0.953840 -2.121049 0.646644 0.852404 0.526995
122 -2.744112 -0.432944 -1.275036 0.830403 0.123720 -1.720654 0.565414
X0 X1
575 -1.312888 -0.098560
145 0.212606 0.129769
801 0.661143 -1.661558
890 -0.350118 -0.737701
338 1.383703 -1.870320
.. ... ...
87 -0.101429 0.080287
396 0.405879 0.540613
535 2.925960 -1.247736
853 0.526995 0.852404
122 0.565414 -1.720654
[1000 rows x 9 columns], 'y': 575 1.988673
145 -4.715614
801 13.424745
890 -3.809211
338 14.613827
...
87 8.347375
396 -9.105144
535 16.319324
853 11.211181
122 -8.281570
Name: y, Length: 1000, dtype: float64, 'treatment': 575 True
145 False
801 True
890 False
338 True
...
87 True
396 False
535 True
853 True
122 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
570 -0.251892 2.217378 0.128972 0.877789 -2.406003 -0.913432 -1.619846
138 0.573441 0.791258 -0.393677 1.597789 -1.053529 0.436214 0.005347
175 -1.239073 0.705045 -0.631863 0.820378 0.228619 -1.240018 2.829001
177 -2.041704 0.339386 1.887360 0.853861 0.079121 -1.425156 2.631870
507 -1.566631 -0.152512 -1.731438 0.974744 -1.418661 -1.855128 0.857973
.. ... ... ... ... ... ... ...
341 -1.380210 0.251500 2.155730 -1.460049 -0.465035 -1.399468 0.820430
882 -2.200841 0.473423 -1.663119 -0.534963 0.991635 -1.095692 -0.001438
52 0.272559 1.264574 0.920277 1.558250 -1.276324 0.140228 -0.269838
126 -0.180520 2.109796 0.497949 -0.657129 -0.339303 -1.753526 0.177609
191 -0.095375 -0.266770 -1.843198 0.164677 -1.451439 0.072266 0.011743
X0 X1
570 -1.619846 -0.913432
138 0.005347 0.436214
175 2.829001 -1.240018
177 2.631870 -1.425156
507 0.857973 -1.855128
.. ... ...
341 0.820430 -1.399468
882 -0.001438 -1.095692
52 -0.269838 0.140228
126 0.177609 -1.753526
191 0.011743 0.072266
[1000 rows x 9 columns], 'y': 570 -0.557158
138 11.274922
175 17.721185
177 13.887378
507 -8.258449
...
341 5.872196
882 -4.513230
52 9.973921
126 9.175909
191 -5.492128
Name: y, Length: 1000, dtype: float64, 'treatment': 570 True
138 True
175 True
177 True
507 False
...
341 True
882 False
52 True
126 True
191 False
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8388
INFO:causalml: RMSE (Treatment): 0.9421
INFO:causalml: sMAPE (Control): 0.4387
INFO:causalml: sMAPE (Treatment): 0.1767
INFO:causalml: Gini (Control): 0.7289
INFO:causalml: Gini (Treatment): 0.9871
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
{'X': W4 W2 W1 W3 W0 X1 X0 \
674 -1.275184 1.358200 -0.726155 -0.106801 1.792994 -0.003869 -0.927698
170 -1.230840 2.762799 -1.489235 0.316969 -0.664481 -0.677436 -0.700865
364 -1.093882 1.445454 1.445245 -0.311255 -1.621083 -0.424070 1.006841
454 -0.414301 0.374911 -0.825270 0.696024 -1.912538 -0.252441 2.359192
1 -0.546745 0.560050 -1.029776 1.825449 -1.022233 0.862300 0.474211
.. ... ... ... ... ... ... ...
301 -0.716979 -0.937502 0.498046 0.779203 -0.393113 -1.010865 1.063551
209 -0.084613 0.739022 -1.232722 -0.059404 1.067833 -0.912770 -0.696018
139 -1.718548 0.936408 0.545828 0.020241 0.924205 -0.693409 1.116505
982 -0.800873 0.522693 -0.407466 -0.942755 0.556857 -1.488190 1.116656
353 -0.057680 1.006295 -0.067730 -0.207153 -1.318915 0.302234 2.503398
X0 X1
674 -0.927698 -0.003869
170 -0.700865 -0.677436
364 1.006841 -0.424070
454 2.359192 -0.252441
1 0.474211 0.862300
.. ... ...
301 1.063551 -1.010865
209 -0.696018 -0.912770
139 1.116505 -0.693409
982 1.116656 -1.488190
353 2.503398 0.302234
[1000 rows x 9 columns], 'y': 674 9.459822
170 -2.441764
364 7.693260
454 12.121477
1 11.125450
...
301 9.391349
209 8.004465
139 11.778033
982 12.003112
353 16.031327
Name: y, Length: 1000, dtype: float64, 'treatment': 674 True
170 False
364 True
454 True
1 True
...
301 True
209 True
139 True
982 True
353 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
996 -2.971085 1.947352 -0.453038 1.635119 1.145276 1.018412 2.208047
524 -0.145506 0.713185 -0.266433 -0.617454 0.114717 -0.278091 2.170591
450 0.200883 0.403165 0.126127 1.144775 -0.779232 -1.787856 -2.799749
697 -0.708518 0.657108 -1.175912 0.534101 -0.825237 -2.467847 0.026325
396 -0.268793 -2.167808 -1.130802 -1.329649 -1.476917 0.552037 0.543689
.. ... ... ... ... ... ... ...
370 -1.308630 0.430302 -1.112576 0.925546 -1.404983 -0.084853 0.940627
918 -1.811025 1.249892 0.812562 0.987837 -0.536020 -0.154597 1.555279
453 -1.161964 -0.627300 -0.312053 1.010994 -0.420745 -0.378774 -0.314639
196 -2.030011 1.175683 -1.086168 -0.637678 -1.431378 -1.200674 0.660302
73 -0.751418 0.109541 -0.967291 1.512617 -1.724470 -0.846512 3.628383
X0 X1
996 2.208047 1.018412
524 2.170591 -0.278091
450 -2.799749 -1.787856
697 0.026325 -2.467847
396 0.543689 0.552037
.. ... ...
370 0.940627 -0.084853
918 1.555279 -0.154597
453 -0.314639 -0.378774
196 0.660302 -1.200674
73 3.628383 -0.846512
[1000 rows x 9 columns], 'y': 996 17.211685
524 18.575304
450 -2.499583
697 3.459264
396 -9.105144
...
370 6.533270
918 12.845128
453 4.442757
196 1.676450
73 16.038810
Name: y, Length: 1000, dtype: float64, 'treatment': 996 True
524 True
450 True
697 True
396 False
...
370 True
918 True
453 True
196 True
73 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: RMSE (Control): 3.1302
INFO:causalml: RMSE (Treatment): 0.9367
INFO:causalml: sMAPE (Control): 0.5797
INFO:causalml: sMAPE (Treatment): 0.1733
INFO:causalml: Gini (Control): 0.7355
INFO:causalml: Gini (Treatment): 0.9891
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0294
INFO:causalml: RMSE (Treatment): 0.9617
INFO:causalml: sMAPE (Control): 0.5461
INFO:causalml: sMAPE (Treatment): 0.1705
INFO:causalml: Gini (Control): 0.7490
INFO:causalml: Gini (Treatment): 0.9879
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1241
INFO:causalml: RMSE (Treatment): 1.0540
INFO:causalml: sMAPE (Control): 0.4882
INFO:causalml: sMAPE (Treatment): 0.1936
INFO:causalml: Gini (Control): 0.7337
INFO:causalml: Gini (Treatment): 0.9856
{'X': W4 W2 W1 W3 W0 X1 X0 \
75 -0.757333 -0.712916 0.105189 -0.080202 -0.707051 1.598623 2.093872
102 -0.409235 -0.541200 -1.639509 1.664483 0.141387 -1.093047 0.767702
814 0.343624 2.428392 -0.183959 0.104039 -0.569434 -1.234335 -0.143349
709 0.787223 0.949325 1.536416 0.009398 -0.989808 -1.695050 1.432090
538 -1.220204 2.286013 0.177264 1.391621 1.819995 -2.184618 0.889050
.. ... ... ... ... ... ... ...
898 -1.313018 1.847124 -0.969984 1.714070 0.632784 -1.628770 2.241001
976 0.092232 0.422641 -0.635967 -0.206560 0.383167 -1.439808 -0.728771
432 -1.903219 0.642305 0.263048 0.563384 0.242865 -0.227973 0.052633
989 -1.398945 1.910521 2.088727 0.018377 -1.371115 0.390374 1.342492
534 -2.308233 -0.613270 -3.890913 -0.742875 -0.127011 -1.237730 0.209115
X0 X1
75 2.093872 1.598623
102 0.767702 -1.093047
814 -0.143349 -1.234335
709 1.432090 -1.695050
538 0.889050 -2.184618
.. ... ...
898 2.241001 -1.628770
976 -0.728771 -1.439808
432 0.052633 -0.227973
989 1.342492 0.390374
534 0.209115 -1.237730
[1000 rows x 9 columns], 'y': 75 -4.842126
102 12.024923
814 8.970856
709 14.547782
538 16.761939
...
898 17.331546
976 5.822048
432 6.046513
989 11.211139
534 -10.998817
Name: y, Length: 1000, dtype: float64, 'treatment': 75 False
102 True
814 True
709 True
538 True
...
898 True
976 True
432 True
989 True
534 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
325 -0.989731 0.780426 -0.471838 0.421229 -0.502973 -1.145870 -1.010960
816 -0.350574 0.965547 -0.381352 -0.638433 -2.333646 -1.730109 -0.276716
556 -1.366154 0.375266 -0.654065 -1.339450 -0.190017 -2.154392 -0.115430
769 -1.938171 0.734708 -0.308602 -0.203508 -0.249352 0.168703 1.681798
227 -0.762855 1.853916 -0.703500 1.230172 0.001538 -1.531708 0.454908
.. ... ... ... ... ... ... ...
536 -1.368469 0.234808 -0.581402 -0.272878 -0.204108 1.257436 -1.011244
585 0.915123 0.401585 -0.227586 0.532163 -0.063974 0.580786 0.861562
331 -1.142880 1.570995 -1.097257 0.688392 0.264632 -1.329392 0.596813
913 -1.821448 0.201364 -0.282816 2.146074 0.067142 -0.281985 0.904230
67 -0.957141 0.080458 -0.232750 0.945741 -0.507281 -2.479363 -1.488055
X0 X1
325 -1.010960 -1.145870
816 -0.276716 -1.730109
556 -0.115430 -2.154392
769 1.681798 0.168703
227 0.454908 -1.531708
.. ... ...
536 -1.011244 1.257436
585 0.861562 0.580786
331 0.596813 -1.329392
913 0.904230 -0.281985
67 -1.488055 -2.479363
[1000 rows x 9 columns], 'y': 325 1.470513
816 -0.020121
556 0.746452
769 -5.821681
227 9.555874
...
536 3.123954
585 17.683899
331 10.231377
913 10.638397
67 -0.972001
Name: y, Length: 1000, dtype: float64, 'treatment': 325 True
816 True
556 True
769 False
227 True
...
536 True
585 True
331 True
913 True
67 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9356
INFO:causalml: RMSE (Treatment): 0.9295
INFO:causalml: sMAPE (Control): 0.4843
INFO:causalml: sMAPE (Treatment): 0.1740
INFO:causalml: Gini (Control): 0.7237
INFO:causalml: Gini (Treatment): 0.9879
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8735
INFO:causalml: RMSE (Treatment): 0.9463
INFO:causalml: sMAPE (Control): 0.4996
INFO:causalml: sMAPE (Treatment): 0.2070
INFO:causalml: Gini (Control): 0.7439
INFO:causalml: Gini (Treatment): 0.9887
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
864 -1.378966 1.163425 -1.222624 -1.350334 -1.365408 -0.717210 0.466981
87 -1.256415 1.284809 -2.247451 1.167455 0.624770 -0.131766 0.037739
735 -0.714745 0.352892 -2.026534 -0.469867 0.867790 -1.244862 2.108344
970 -1.482619 1.751589 1.381131 -0.789499 -0.669645 -1.595394 -0.017023
872 -0.693148 1.474590 0.515663 -1.858463 0.370774 0.060584 0.865481
.. ... ... ... ... ... ... ...
425 -0.549250 0.962562 0.366956 0.492343 -0.240984 -1.775844 1.552650
916 -2.362087 0.484083 -0.342292 0.332559 0.423326 0.218083 -0.177975
85 -1.540931 1.480379 -0.472548 -0.111599 -0.965064 -2.732768 -0.265116
357 -0.515377 -0.879357 -0.706456 -0.752520 -0.279704 0.325564 -0.580021
216 -1.361145 1.753494 -2.439841 -1.078344 -0.815397 -1.262698 -0.057730
X0 X1
864 0.466981 -0.717210
87 0.037739 -0.131766
735 2.108344 -1.244862
970 -0.017023 -1.595394
872 0.865481 0.060584
.. ... ...
425 1.552650 -1.775844
916 -0.177975 0.218083
85 -0.265116 -2.732768
357 -0.580021 0.325564
216 -0.057730 -1.262698
[1000 rows x 9 columns], 'y': 864 -8.539115
87 8.347375
735 15.212283
970 3.837965
872 11.901044
...
425 13.323890
916 4.529654
85 -0.384362
357 4.629609
216 2.376140
Name: y, Length: 1000, dtype: float64, 'treatment': 864 False
87 True
735 True
970 True
872 True
...
425 True
916 True
85 True
357 True
216 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
816 -0.388047 0.924588 -0.476783 -1.002072 -2.281807 -1.966699 -0.420618
275 -2.213287 -0.386113 0.142531 1.807303 -0.624429 -1.486348 -1.323718
999 -1.667723 0.404085 -0.014222 0.372220 -1.571434 -0.354246 -0.497524
404 0.251516 -1.381578 -0.688007 1.323307 -0.512810 0.842583 -0.338387
213 -0.847340 1.190321 -0.327402 1.416738 -1.672036 -0.540066 0.231177
.. ... ... ... ... ... ... ...
891 -0.268138 -0.445246 -0.878929 1.526581 0.791018 0.110399 1.971061
247 -1.091098 0.094910 0.672182 0.926585 -0.317620 -1.799480 -0.591769
762 0.248716 0.722264 -0.871655 0.522479 -0.891556 0.275079 2.329206
110 -1.976096 2.523392 -0.612924 1.400103 -0.539657 0.638363 0.916249
398 -0.408833 1.392336 -1.118775 0.410265 -1.701998 -1.404167 0.136762
X0 X1
816 -0.420618 -1.966699
275 -1.323718 -1.486348
999 -0.497524 -0.354246
404 -0.338387 0.842583
213 0.231177 -0.540066
.. ... ...
891 1.971061 0.110399
247 -0.591769 -1.799480
762 2.329206 0.275079
110 0.916249 0.638363
398 0.136762 -1.404167
[1000 rows x 9 columns], 'y': 816 -0.020121
275 -1.163599
999 -8.100697
404 -1.323791
213 5.306177
...
891 20.166272
247 3.320266
762 17.175897
110 11.934711
398 -5.105764
Name: y, Length: 1000, dtype: float64, 'treatment': 816 True
275 True
999 False
404 False
213 True
...
891 True
247 True
762 True
110 True
398 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
26 0.023678 0.058490 0.106981 2.666127 -0.511525 -1.991283 2.058464
631 0.511913 2.280563 -1.197253 1.562609 -0.215902 -1.020548 0.298896
591 -1.917706 1.021035 1.482307 0.291711 -0.439067 -0.077290 -0.568812
936 -0.469196 -1.072774 -0.445154 -0.658563 -0.924928 -2.700354 1.236708
221 -1.078034 0.828821 -1.093313 -0.510332 -2.243030 1.374379 0.571832
.. ... ... ... ... ... ... ...
231 -1.059865 1.882541 -0.203531 0.417511 1.029628 -1.972507 1.683474
45 -0.813366 0.618802 0.665742 -0.174151 -1.195950 -0.202764 1.213446
897 -0.522876 -0.893288 -1.382943 0.031426 -0.364126 -0.181860 -0.365989
79 -0.920979 0.756543 0.729420 0.835588 -0.316096 -0.910696 0.700811
338 0.143678 2.424775 -0.366023 0.065665 -0.229007 -1.673547 1.227384
X0 X1
26 2.058464 -1.991283
631 0.298896 -1.020548
591 -0.568812 -0.077290
936 1.236708 -2.700354
221 0.571832 1.374379
.. ... ...
231 1.683474 -1.972507
45 1.213446 -0.202764
897 -0.365989 -0.181860
79 0.700811 -0.910696
338 1.227384 -1.673547
[1000 rows x 9 columns], 'y': 26 17.468518
631 14.220450
591 3.407731
936 4.998172
221 -10.175373
...
231 16.734242
45 9.275797
897 -4.566144
79 10.632327
338 14.613827
Name: y, Length: 1000, dtype: float64, 'treatment': 26 True
631 True
591 True
936 True
221 False
...
231 True
45 True
897 False
79 True
338 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8528
INFO:causalml: RMSE (Treatment): 0.9856
INFO:causalml: sMAPE (Control): 0.4977
INFO:causalml: sMAPE (Treatment): 0.1629
INFO:causalml: Gini (Control): 0.7488
INFO:causalml: Gini (Treatment): 0.9862
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.2241
INFO:causalml: RMSE (Treatment): 0.9317
INFO:causalml: sMAPE (Control): 0.5776
INFO:causalml: sMAPE (Treatment): 0.1543
INFO:causalml: Gini (Control): 0.6994
INFO:causalml: Gini (Treatment): 0.9888
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
663 1.078179 0.156226 0.446981 -0.052989 -0.182723 0.688062 0.799450
959 -1.315478 1.172398 -1.866088 0.694998 0.951762 1.571519 -1.076170
542 0.662810 2.174263 -1.541615 1.123954 -0.612563 0.523472 -0.491306
213 -1.155594 1.235499 -0.292570 1.237619 -1.615249 -0.939958 0.070592
625 -1.321971 0.223750 0.478791 -0.019464 1.090621 -0.805170 1.259184
.. ... ... ... ... ... ... ...
9 0.192989 0.814800 1.424924 -1.145901 -0.763888 0.669395 -0.203615
19 -0.477455 -0.356164 -0.890055 2.177785 -1.006223 -1.615244 0.088047
830 -0.723356 -0.566580 0.276901 2.035714 -0.231138 -1.251536 1.154490
343 -1.264323 1.803949 0.915137 -1.755312 -0.898431 -0.865052 0.358412
818 -2.114619 0.956673 0.047994 0.222962 -2.378329 -0.680649 1.045604
X0 X1
663 0.799450 0.688062
959 -1.076170 1.571519
542 -0.491306 0.523472
213 0.070592 -0.939958
625 1.259184 -0.805170
.. ... ...
9 -0.203615 0.669395
19 0.088047 -1.615244
830 1.154490 -1.251536
343 0.358412 -0.865052
818 1.045604 -0.680649
[1000 rows x 9 columns], 'y': 663 15.384533
959 7.562645
542 12.169721
213 5.306177
625 12.619755
...
9 8.755592
19 6.700542
830 -1.062782
343 4.731928
818 -11.770683
Name: y, Length: 1000, dtype: float64, 'treatment': 663 True
959 True
542 True
213 True
625 True
...
9 True
19 True
830 False
343 True
818 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
835 0.306562 -0.032909 -0.403386 -1.002239 1.594554 0.150366 1.873825
630 -1.828867 0.706688 -0.076602 -1.285112 0.444461 1.199891 1.358834
770 -2.884794 0.052229 -1.146703 -0.461669 -1.249223 0.455205 0.867935
338 0.066256 2.294859 -0.250545 0.034695 -0.068221 -1.912920 1.239046
574 -0.511164 0.093076 -1.210577 1.056846 -0.482827 -1.004801 -0.190245
.. ... ... ... ... ... ... ...
336 -3.046083 1.587357 0.558987 1.342059 -0.764320 -2.113244 0.925285
95 -0.079302 4.714852 0.818300 0.292822 -0.515397 -2.804820 -0.486523
713 -0.536668 2.005241 -1.347787 1.364096 -0.445617 -0.789056 -0.185889
97 -0.694538 -0.132024 0.177391 0.442854 0.698154 0.802542 1.319311
375 -1.959415 -0.308475 -0.556457 -0.497601 -0.924967 -1.428880 1.441709
X0 X1
835 1.873825 0.150366
630 1.358834 1.199891
770 0.867935 0.455205
338 1.239046 -1.912920
574 -0.190245 -1.004801
.. ... ...
336 0.925285 -2.113244
95 -0.486523 -2.804820
713 -0.185889 -0.789056
97 1.319311 0.802542
375 1.441709 -1.428880
[1000 rows x 9 columns], 'y': 835 20.490073
630 11.111329
770 -12.067607
338 14.613827
574 5.633909
...
336 2.926169
95 9.600613
713 9.135870
97 16.738796
375 3.740574
Name: y, Length: 1000, dtype: float64, 'treatment': 835 True
630 True
770 False
338 True
574 True
...
336 True
95 True
713 True
97 True
375 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9748
INFO:causalml: RMSE (Treatment): 1.0791
INFO:causalml: sMAPE (Control): 0.5030
INFO:causalml: sMAPE (Treatment): 0.1791
INFO:causalml: Gini (Control): 0.7130
INFO:causalml: Gini (Treatment): 0.9842
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8029
INFO:causalml: RMSE (Treatment): 0.9547
INFO:causalml: sMAPE (Control): 0.5077
INFO:causalml: sMAPE (Treatment): 0.1519
INFO:causalml: Gini (Control): 0.7321
INFO:causalml: Gini (Treatment): 0.9868
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9671
INFO:causalml: RMSE (Treatment): 1.0479
{'X': W4 W2 W1 W3 W0 X1 X0 \
349 -1.721742 0.994178 -0.248258 0.170946 0.084045 -0.579222 1.403727
348 -1.015222 2.066811 -1.843225 0.417722 -1.444937 -1.728400 1.654515
243 -3.048965 -0.518166 0.249463 1.413264 -1.336714 -0.364473 0.627325
561 -0.585552 -0.209026 -0.357597 1.027069 -2.551457 0.321784 1.257139
445 -0.080532 0.021305 0.997780 2.976259 -0.609740 -0.540314 1.162446
.. ... ... ... ... ... ... ...
898 -1.390026 1.825700 -0.988322 1.716423 0.559838 -1.567219 2.137330
563 -0.466899 -0.165808 -3.015552 1.193963 -1.463896 1.092221 0.453459
573 0.212725 1.077798 -1.054672 1.956676 -1.734482 -1.164064 -1.007024
315 -0.646043 0.204124 1.405069 1.427420 0.253353 -0.779818 0.430896
416 -1.034436 0.322248 -0.198104 -0.459426 -0.633344 -1.344082 -0.073182
X0 X1
349 1.403727 -0.579222
348 1.654515 -1.728400
243 0.627325 -0.364473
561 1.257139 0.321784
445 1.162446 -0.540314
.. ... ...
898 2.137330 -1.567219
563 0.453459 1.092221
573 -1.007024 -1.164064
315 0.430896 -0.779818
416 -0.073182 -1.344082
[1000 rows x 9 columns], 'y': 349 10.315484
348 9.469476
243 -10.483545
561 8.271140
445 16.120442
...
898 17.331546
563 -5.142521
573 3.364299
315 11.545213
416 2.647910
Name: y, Length: 1000, dtype: float64, 'treatment': 349 True
348 True
243 False
561 True
445 True
...
898 True
563 False
573 True
315 True
416 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
177 -1.922237 0.485077 1.631578 0.819498 0.107530 -1.224345 2.252789
248 -0.342131 0.605659 -1.673302 0.453481 1.089323 -0.869957 -0.334178
519 -1.082507 1.630724 -0.037752 0.137577 -1.415357 -0.872408 0.516459
54 1.568927 2.117927 1.208255 0.531668 -1.185251 -0.768777 -0.675083
993 -0.932022 0.529658 -0.377867 0.116624 -0.725836 0.124112 1.236988
.. ... ... ... ... ... ... ...
698 -1.138849 1.739492 0.295478 1.372403 -1.312977 0.210428 0.045664
135 -1.665508 2.299056 -1.063216 1.214164 -3.322477 -0.037896 0.924240
681 -0.842081 1.444749 0.741345 -0.852470 1.257753 -0.079214 1.672446
535 -0.646823 -0.444539 -0.586156 0.504034 -0.294741 -1.590632 3.031652
135 -1.574404 2.295451 -1.082528 1.400681 -3.205474 0.187770 0.662262
X0 X1
177 2.252789 -1.224345
248 -0.334178 -0.869957
519 0.516459 -0.872408
54 -0.675083 -0.768777
993 1.236988 0.124112
.. ... ...
698 0.045664 0.210428
135 0.924240 -0.037896
681 1.672446 -0.079214
535 3.031652 -1.590632
135 0.662262 0.187770
[1000 rows x 9 columns], 'y': 177 13.887378
248 10.511960
519 6.513308
54 9.737109
993 10.904694
...
698 7.381116
135 2.418843
681 18.090454
535 16.319324
135 2.418843
Name: y, Length: 1000, dtype: float64, 'treatment': 177 True
248 True
519 True
54 True
993 True
...
698 True
135 True
681 True
535 True
135 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: sMAPE (Control): 0.5210
INFO:causalml: sMAPE (Treatment): 0.1817
INFO:causalml: Gini (Control): 0.7762
INFO:causalml: Gini (Treatment): 0.9860
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8423
INFO:causalml: RMSE (Treatment): 0.9524
INFO:causalml: sMAPE (Control): 0.4624
INFO:causalml: sMAPE (Treatment): 0.1790
INFO:causalml: Gini (Control): 0.7398
INFO:causalml: Gini (Treatment): 0.9876
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9004
INFO:causalml: RMSE (Treatment): 0.9385
INFO:causalml: sMAPE (Control): 0.4947
INFO:causalml: sMAPE (Treatment): 0.1545
INFO:causalml: Gini (Control): 0.7617
INFO:causalml: Gini (Treatment): 0.9878
{'X': W4 W2 W1 W3 W0 X1 X0 \
724 -1.438144 -0.332737 0.392911 0.212140 -0.665798 0.343149 0.757040
751 -0.401081 -0.175121 -0.010361 -0.048220 -0.675733 -1.009049 1.318978
687 0.182106 0.577860 -1.602666 1.575414 -0.252950 -0.201800 2.081642
294 0.691661 0.305707 -0.276849 0.436226 -0.938440 -1.498923 -0.104459
100 -1.136832 1.936971 -0.818190 2.375104 -0.480383 -1.567064 1.095914
.. ... ... ... ... ... ... ...
311 -0.539638 -0.734239 0.330032 -0.759054 -1.973271 -0.025732 1.392467
92 -1.274988 0.222087 -0.171338 0.406686 0.299645 -1.318381 0.211155
280 -0.980919 -0.636800 -0.822122 -0.528152 -0.459369 -1.805989 1.034790
948 0.160932 0.722128 0.042512 -0.375004 -1.753827 -0.357351 0.838413
668 -0.174736 0.461147 0.483940 -0.073567 -1.070415 -0.771726 1.044764
X0 X1
724 0.757040 0.343149
751 1.318978 -1.009049
687 2.081642 -0.201800
294 -0.104459 -1.498923
100 1.095914 -1.567064
.. ... ...
311 1.392467 -0.025732
92 0.211155 -1.318381
280 1.034790 -1.805989
948 0.838413 -0.357351
668 1.044764 -0.771726
[1000 rows x 9 columns], 'y': 724 7.856564
751 10.177478
687 19.701253
294 8.885443
100 11.113321
...
311 6.548500
92 7.646588
280 5.994137
948 9.814477
668 10.579344
Name: y, Length: 1000, dtype: float64, 'treatment': 724 True
751 True
687 True
294 True
100 True
...
311 True
92 True
280 True
948 True
668 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
51 -0.271968 0.458390 1.267380 -0.199087 -0.197657 -0.538826 -0.226384
10 0.970625 3.067773 0.223898 2.879977 0.834710 -1.322450 1.055600
975 -0.912818 0.808119 0.283279 1.816216 -0.525104 -1.245342 0.897152
290 0.454061 -1.064971 0.315819 -0.383260 0.775556 -1.332200 0.745180
642 -1.271036 0.321130 -1.184572 0.813957 -0.373138 0.408561 -0.441891
.. ... ... ... ... ... ... ...
23 -1.745951 0.284976 -0.584939 0.009987 0.281503 0.464791 2.089986
905 -1.137892 0.810218 0.339671 -0.323423 -0.825219 -1.534036 0.640463
216 -1.098435 1.733659 -2.455863 -0.949506 -0.900628 -1.484929 -0.096884
28 0.519413 -1.793534 -0.629775 -1.531616 -0.133148 -0.455310 -0.300663
741 -0.663581 2.882579 -1.455952 -0.962903 -1.235194 -0.395429 0.136463
X0 X1
51 -0.226384 -0.538826
10 1.055600 -1.322450
975 0.897152 -1.245342
290 0.745180 -1.332200
642 -0.441891 0.408561
.. ... ...
23 2.089986 0.464791
905 0.640463 -1.534036
216 -0.096884 -1.484929
28 -0.300663 -0.455310
741 0.136463 -0.395429
[1000 rows x 9 columns], 'y': 51 8.374283
10 24.500212
975 9.860888
290 12.664366
642 4.413860
...
23 -4.601417
905 -5.143310
216 2.376140
28 4.753158
741 5.593102
Name: y, Length: 1000, dtype: float64, 'treatment': 51 True
10 True
975 True
290 True
642 True
...
23 False
905 False
216 True
28 True
741 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9230
INFO:causalml: RMSE (Treatment): 0.9689
INFO:causalml: sMAPE (Control): 0.5764
INFO:causalml: sMAPE (Treatment): 0.1908
INFO:causalml: Gini (Control): 0.7373
INFO:causalml: Gini (Treatment): 0.9894
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9404
INFO:causalml: RMSE (Treatment): 0.9361
INFO:causalml: sMAPE (Control): 0.5608
{'X': W4 W2 W1 W3 W0 X1 X0 \
151 -1.451343 2.117412 0.057350 0.228720 -0.666035 0.318744 -0.507604
289 0.709237 -0.097306 -0.534428 0.454660 1.091187 -1.461089 1.641729
856 -2.090114 0.977529 -2.008539 -0.850157 -2.154341 -2.185380 -0.444760
507 -1.498719 -0.280197 -1.843650 1.012497 -1.428442 -2.318102 0.960008
593 -0.254514 1.059549 -0.632799 -1.430683 -0.380345 -0.097567 0.396568
.. ... ... ... ... ... ... ...
188 1.981869 1.294382 -0.672061 1.002822 -0.906319 0.110632 0.519760
274 -1.441295 1.166923 -1.110185 1.572215 -1.119379 -0.864990 0.912239
688 -0.547513 0.834360 -1.085616 -0.343214 -1.414722 -2.185953 0.446973
173 -1.768526 0.219728 -1.886426 1.139153 -1.269672 -1.316015 0.551071
365 -0.013680 -0.244481 0.764536 0.988104 0.414957 -1.574025 1.368041
X0 X1
151 -0.507604 0.318744
289 1.641729 -1.461089
856 -0.444760 -2.185380
507 0.960008 -2.318102
593 0.396568 -0.097567
.. ... ...
188 0.519760 0.110632
274 0.912239 -0.864990
688 0.446973 -2.185953
173 0.551071 -1.316015
365 1.368041 -1.574025
[1000 rows x 9 columns], 'y': 151 4.957949
289 19.767563
856 -13.300039
507 -8.258449
593 8.505994
...
188 17.138200
274 -4.605752
688 -5.466406
173 -7.857862
365 15.195618
Name: y, Length: 1000, dtype: float64, 'treatment': 151 True
289 True
856 False
507 False
593 True
...
188 True
274 False
688 False
173 False
365 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
255 1.133141 2.240067 1.125542 -0.273125 -0.989053 -0.952641 0.326860
574 -0.627392 0.302338 -0.988008 1.136665 -0.486729 -1.072095 -0.240808
571 0.036812 -0.336157 1.466677 0.344865 0.441510 -0.684800 1.410161
914 0.028245 1.206804 0.219451 -0.591808 -0.976701 0.822046 0.977400
602 -2.005434 2.564907 -1.005840 1.727996 -1.563756 0.382768 -1.360408
.. ... ... ... ... ... ... ...
835 0.087010 0.143228 -0.435516 -1.147568 1.888092 0.346188 1.742445
622 -0.937723 -0.820100 0.087610 -0.325510 0.338565 -0.135640 0.278474
425 -0.625617 0.946650 0.343589 0.381559 -0.167683 -1.652701 1.941279
365 -0.018941 -0.296919 0.643877 1.094566 0.281830 -1.407360 1.414953
657 -0.973794 0.735844 0.302811 0.673145 0.283865 -0.848070 0.960780
X0 X1
255 0.326860 -0.952641
574 -0.240808 -1.072095
571 1.410161 -0.684800
914 0.977400 0.822046
602 -1.360408 0.382768
.. ... ...
835 1.742445 0.346188
622 0.278474 -0.135640
425 1.941279 -1.652701
365 1.414953 -1.407360
657 0.960780 -0.848070
[1000 rows x 9 columns], 'y': 255 13.881950
574 5.633909
571 16.753939
914 12.801840
602 1.254728
...
835 20.490073
622 8.845133
425 13.323890
365 15.195618
657 12.117853
Name: y, Length: 1000, dtype: float64, 'treatment': 255 True
574 True
571 True
914 True
602 True
...
835 True
622 True
425 True
365 True
657 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: sMAPE (Treatment): 0.1717
INFO:causalml: Gini (Control): 0.7444
INFO:causalml: Gini (Treatment): 0.9889
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0033
INFO:causalml: RMSE (Treatment): 0.9767
INFO:causalml: sMAPE (Control): 0.4587
INFO:causalml: sMAPE (Treatment): 0.1761
INFO:causalml: Gini (Control): 0.7124
INFO:causalml: Gini (Treatment): 0.9873
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9830
INFO:causalml: RMSE (Treatment): 1.0151
INFO:causalml: sMAPE (Control): 0.4974
{'X': W4 W2 W1 W3 W0 X1 X0 \
57 -0.241496 0.341353 -0.879670 0.653348 0.562012 -0.874722 2.321090
946 -0.039226 1.070254 0.817258 1.531369 -0.729411 -1.606529 1.682653
779 -1.350659 0.815369 0.127656 0.103901 0.278969 -0.815212 0.066001
896 -2.432024 -0.896851 1.092218 0.425996 -1.353030 -0.393840 -1.777303
403 -1.548241 2.346455 0.703124 0.469986 -2.174662 -0.597804 -1.659799
.. ... ... ... ... ... ... ...
500 -0.764798 -0.741966 0.661109 1.471012 1.249719 -0.250612 1.784505
353 -0.129342 0.937341 -0.341557 0.065221 -1.231137 0.286639 2.308218
100 -1.378639 1.891778 -0.944875 2.350588 -0.498995 -1.187752 0.950568
384 -0.985811 0.428972 -1.376992 -0.276737 -0.658336 0.236872 0.755765
427 0.428906 0.044837 0.574607 1.415539 -1.691916 -0.202051 1.901581
X0 X1
57 2.321090 -0.874722
946 1.682653 -1.606529
779 0.066001 -0.815212
896 -1.777303 -0.393840
403 -1.659799 -0.597804
.. ... ...
500 1.784505 -0.250612
353 2.308218 0.286639
100 0.950568 -1.187752
384 0.755765 0.236872
427 1.901581 -0.202051
[1000 rows x 9 columns], 'y': 57 18.788397
946 16.526801
779 7.001850
896 -7.004058
403 -3.265557
...
500 17.859054
353 16.031327
100 11.113321
384 -5.168611
427 15.122153
Name: y, Length: 1000, dtype: float64, 'treatment': 57 True
946 True
779 True
896 True
403 True
...
500 True
353 True
100 True
384 False
427 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
882 -2.069892 0.626586 -1.832899 -0.427297 1.053283 -0.782349 -0.035057
365 -0.010483 -0.356730 0.588927 1.041733 0.428563 -1.548626 1.165125
645 0.895264 1.665214 -0.241590 -0.355268 -2.385213 -1.247615 0.714368
183 -1.739849 0.790751 0.101503 -0.955607 0.571522 0.000875 0.226301
160 -1.739012 2.249436 0.471353 1.260166 0.195565 -0.286865 1.957172
.. ... ... ... ... ... ... ...
559 -1.348577 -0.508567 0.135080 0.760634 -0.578021 -1.684832 0.011024
536 -1.320728 0.180165 -0.598624 -0.357499 -0.200479 1.283381 -0.942567
387 -1.085304 1.898855 -0.049487 -0.493745 1.112310 -1.294861 2.878083
652 -1.434432 -0.515402 -2.014047 0.739681 0.447348 0.527605 -0.378463
466 0.169418 1.495641 -0.416136 1.897580 -0.623185 0.534709 1.641410
X0 X1
882 -0.035057 -0.782349
365 1.165125 -1.548626
645 0.714368 -1.247615
183 0.226301 0.000875
160 1.957172 -0.286865
.. ... ...
559 0.011024 -1.684832
536 -0.942567 1.283381
387 2.878083 -1.294861
652 -0.378463 0.527605
466 1.641410 0.534709
[1000 rows x 9 columns], 'y': 882 -4.513230
365 15.195618
645 8.189153
183 5.804148
160 15.240536
...
559 2.992068
536 3.123954
387 19.096949
652 -3.763410
466 18.638368
Name: y, Length: 1000, dtype: float64, 'treatment': 882 False
365 True
645 True
183 True
160 True
...
559 True
536 True
387 True
652 False
466 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: sMAPE (Treatment): 0.1793
INFO:causalml: Gini (Control): 0.7089
INFO:causalml: Gini (Treatment): 0.9869
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1606
INFO:causalml: RMSE (Treatment): 0.9664
INFO:causalml: sMAPE (Control): 0.5522
INFO:causalml: sMAPE (Treatment): 0.1688
INFO:causalml: Gini (Control): 0.6994
INFO:causalml: Gini (Treatment): 0.9879
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
62 -0.489888 0.421805 -3.885209 -1.142352 -0.661527 -1.367046 0.190653
701 -0.397797 -1.049307 -0.657659 0.561405 -0.665239 0.960965 1.657074
646 -0.505355 1.022138 0.422064 1.678294 -1.630333 -0.457794 0.460388
698 -1.127903 1.739689 0.090811 1.239873 -1.455543 0.148345 -0.075825
320 -1.348275 1.640355 0.014880 -0.332567 -0.476067 0.113882 1.460478
.. ... ... ... ... ... ... ...
671 -1.830457 1.927874 0.108815 0.686607 -1.445390 -0.412422 -0.739515
227 -0.617478 2.117264 -0.796843 1.345096 0.100885 -1.472998 0.194239
832 -0.635179 1.771168 -0.200905 -0.479498 -0.068345 -1.282431 0.163844
170 -1.176175 2.724439 -1.543883 0.238433 -0.518789 -0.637966 -0.519854
715 -0.437745 0.651706 -0.292567 -1.485070 -1.177736 -0.601624 -0.962816
X0 X1
62 0.190653 -1.367046
701 1.657074 0.960965
646 0.460388 -0.457794
698 -0.075825 0.148345
320 1.460478 0.113882
.. ... ...
671 -0.739515 -0.412422
227 0.194239 -1.472998
832 0.163844 -1.282431
170 -0.519854 -0.637966
715 -0.962816 -0.601624
[1000 rows x 9 columns], 'y': 62 -5.979631
701 13.534369
646 9.399353
698 7.381116
320 11.942735
...
671 -6.150284
227 9.555874
832 7.911675
170 -2.441764
715 0.458874
Name: y, Length: 1000, dtype: float64, 'treatment': 62 False
701 True
646 True
698 True
320 True
...
671 False
227 True
832 True
170 False
715 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
173 -1.890919 0.303230 -1.853986 1.086205 -1.063154 -1.480039 0.557782
452 -0.908609 1.446287 0.602898 1.273491 -0.728457 -2.722508 0.638021
362 -2.772817 1.633125 0.477258 -1.222814 -1.376002 -1.625118 0.168268
856 -2.213905 1.100170 -1.873703 -0.831352 -2.196694 -2.148791 -0.410641
778 -2.232317 -0.354925 0.024290 0.391985 0.347478 -1.752844 0.687425
.. ... ... ... ... ... ... ...
648 0.687883 -0.708345 0.617329 -1.582533 -2.457736 -1.103158 0.881376
931 -0.749425 0.972833 -0.048579 -0.511019 -0.159517 -1.135516 0.958728
202 -1.547532 1.893259 1.899565 1.088557 -0.511950 -1.168168 -1.399601
314 -0.929180 -0.435418 -2.500459 0.362450 0.110227 -2.574999 1.657417
885 -2.073608 -0.503616 -1.645188 0.427103 -1.614990 0.502726 0.944974
X0 X1
173 0.557782 -1.480039
452 0.638021 -2.722508
362 0.168268 -1.625118
856 -0.410641 -2.148791
778 0.687425 -1.752844
.. ... ...
648 0.881376 -1.103158
931 0.958728 -1.135516
202 -1.399601 -1.168168
314 1.657417 -2.574999
885 0.944974 0.502726
[1000 rows x 9 columns], 'y': 173 -7.857862
452 7.577603
362 -3.054046
856 -13.300039
778 6.019405
...
648 4.759991
931 10.080089
202 2.297590
314 -3.811119
885 -11.199742
Name: y, Length: 1000, dtype: float64, 'treatment': 173 False
452 True
362 True
856 False
778 True
...
648 True
931 True
202 True
314 False
885 False
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8703
INFO:causalml: RMSE (Treatment): 0.9484
INFO:causalml: sMAPE (Control): 0.4835
INFO:causalml: sMAPE (Treatment): 0.1689
INFO:causalml: Gini (Control): 0.7614
INFO:causalml: Gini (Treatment): 0.9884
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0918
INFO:causalml: RMSE (Treatment): 1.0446
INFO:causalml: sMAPE (Control): 0.4937
INFO:causalml: sMAPE (Treatment): 0.1971
INFO:causalml: Gini (Control): 0.7099
INFO:causalml: Gini (Treatment): 0.9853
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9127
INFO:causalml: RMSE (Treatment): 0.8881
INFO:causalml: sMAPE (Control): 0.5185
INFO:causalml: sMAPE (Treatment): 0.1651
{'X': W4 W2 W1 W3 W0 X1 X0 \
229 -1.693449 0.975769 0.294856 1.677213 0.570499 0.236995 3.001468
32 -1.099286 0.898796 0.284389 -0.614014 -1.150040 0.589624 0.196437
407 -1.199841 0.583590 -0.114395 -0.810430 0.316471 1.190869 0.694040
883 -1.139762 0.160852 -0.071674 -0.104197 -1.540943 0.839832 0.628072
155 0.186297 2.211595 0.272060 1.710993 -0.343155 0.940461 1.044007
.. ... ... ... ... ... ... ...
884 -0.206463 2.515624 -0.597811 0.358788 -1.639772 -1.142756 0.578135
107 -1.391807 0.824917 -0.114520 0.917218 -0.346789 -0.623044 1.090865
345 -1.194521 2.556273 0.304178 -0.438781 -0.127703 -0.705603 1.153798
174 -1.389069 2.427555 -1.962768 0.380924 -2.720164 -0.777716 -0.018113
132 -4.057538 1.581352 -1.081639 1.262583 -2.059606 0.227712 0.373265
X0 X1
229 3.001468 0.236995
32 0.196437 0.589624
407 0.694040 1.190869
883 0.628072 0.839832
155 1.044007 0.940461
.. ... ...
884 0.578135 -1.142756
107 1.090865 -0.623044
345 1.153798 -0.705603
174 -0.018113 -0.777716
132 0.373265 0.227712
[1000 rows x 9 columns], 'y': 229 21.267379
32 -5.941016
407 10.716455
883 5.901248
155 19.147114
...
884 9.392570
107 -2.840767
345 12.057991
174 1.619585
132 -3.629107
Name: y, Length: 1000, dtype: float64, 'treatment': 229 True
32 False
407 True
883 True
155 True
...
884 True
107 False
345 True
174 True
132 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
486 -0.060378 -0.386603 -0.624311 0.427205 0.865676 -1.184077 0.559674
584 -0.754149 0.524564 0.259186 0.327950 0.764248 1.517739 -0.343597
393 -1.303196 0.605609 0.168569 1.115444 -0.924550 -0.102834 0.081622
715 -0.612551 0.682669 -0.199036 -1.235912 -1.123797 -0.718232 -0.907246
287 -2.030588 -0.724655 -2.152445 1.455423 -1.699869 0.777392 0.490297
.. ... ... ... ... ... ... ...
138 0.611603 0.658839 -0.438636 1.626230 -1.021618 0.334653 -0.099974
70 -0.565836 1.834783 -2.122074 -1.142553 0.905590 -0.660720 1.852484
723 0.034264 1.444662 0.785691 0.755711 -0.643581 -0.377432 0.660484
538 -0.823910 2.479396 0.152882 1.342818 1.880938 -1.872310 0.653014
697 -0.914739 0.515895 -1.237094 0.455332 -0.697591 -2.569362 -0.049337
X0 X1
486 0.559674 -1.184077
584 -0.343597 1.517739
393 0.081622 -0.102834
715 -0.907246 -0.718232
287 0.490297 0.777392
.. ... ...
138 -0.099974 0.334653
70 1.852484 -0.660720
723 0.660484 -0.377432
538 0.653014 -1.872310
697 -0.049337 -2.569362
[1000 rows x 9 columns], 'y': 486 12.711964
584 11.093724
393 -4.149152
715 0.458874
287 -11.017227
...
138 11.274922
70 15.668385
723 12.592456
538 16.761939
697 3.459264
Name: y, Length: 1000, dtype: float64, 'treatment': 486 True
584 True
393 False
715 True
287 False
...
138 True
70 True
723 True
538 True
697 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: Gini (Control): 0.6943
INFO:causalml: Gini (Treatment): 0.9893
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9119
INFO:causalml: RMSE (Treatment): 1.1321
{'X': W4 W2 W1 W3 W0 X1 X0 \
498 0.925632 1.248556 0.266050 0.624337 0.139784 0.054055 0.611980
343 -1.275755 1.853760 0.893049 -1.703371 -0.923133 -1.113825 0.470165
406 -1.723518 0.869494 -0.410107 -0.411069 0.242774 1.029431 0.633780
347 -0.783681 -0.425386 -1.016921 1.284220 -1.134495 -0.170870 -0.188672
107 -1.302936 0.849902 -0.159648 0.948353 -0.246683 -0.672936 0.827165
.. ... ... ... ... ... ... ...
650 -1.089455 0.154798 -2.850727 1.223669 0.311584 -1.655243 0.105204
109 -1.315574 0.194043 -0.454507 0.856102 1.277240 -0.215829 2.329545
329 -0.763798 0.152340 -0.132608 0.221868 -1.791237 0.079281 2.224855
960 0.161576 -0.287115 0.066753 -0.917243 -2.944296 -0.165028 1.221761
106 -1.481454 1.547463 0.125611 -0.352701 -2.068552 -1.862149 0.736369
X0 X1
498 0.611980 0.054055
343 0.470165 -1.113825
406 0.633780 1.029431
347 -0.188672 -0.170870
107 0.827165 -0.672936
.. ... ...
650 0.105204 -1.655243
109 2.329545 -0.215829
329 2.224855 0.079281
960 1.221761 -0.165028
106 0.736369 -1.862149
[1000 rows x 9 columns], 'y': 498 17.581110
343 4.731928
406 9.585905
347 4.085427
107 -2.840767
...
650 -2.393578
109 18.593730
329 10.777317
960 4.643805
106 -8.631314
Name: y, Length: 1000, dtype: float64, 'treatment': 498 True
343 True
406 True
347 True
107 False
...
650 False
109 True
329 True
960 True
106 False
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: sMAPE (Control): 0.5824
INFO:causalml: sMAPE (Treatment): 0.1933
INFO:causalml: Gini (Control): 0.7839
INFO:causalml: Gini (Treatment): 0.9837
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0786
INFO:causalml: RMSE (Treatment): 0.9618
INFO:causalml: sMAPE (Control): 0.5333
INFO:causalml: sMAPE (Treatment): 0.1850
INFO:causalml: Gini (Control): 0.7419
INFO:causalml: Gini (Treatment): 0.9893
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
181 1.125728 0.140116 0.069322 0.831179 -0.385813 -0.950129 0.420018
422 -1.770041 0.841889 -0.224366 -0.392414 2.191028 0.024989 0.319091
659 -0.723129 2.909802 -0.962345 2.917851 -1.736066 -0.935685 -0.665218
51 -0.289412 0.743801 1.214467 -0.131556 -0.254289 -0.561595 -0.126134
684 -2.040331 2.247077 0.239600 0.453179 1.300511 -0.708659 0.690296
.. ... ... ... ... ... ... ...
874 0.536244 2.342032 0.843026 2.121612 -1.791246 -0.603460 1.230203
146 -0.789941 -0.290262 -1.449763 0.313378 0.341513 -0.942170 -1.177943
162 -1.414215 0.924055 -0.993010 0.433887 1.924170 -2.278847 2.402717
972 -0.083595 0.625131 -0.987192 1.608500 1.194546 -1.260879 -0.750448
426 -0.539558 1.140058 -0.611717 -0.200436 0.854985 -0.856433 -0.357662
X0 X1
181 0.420018 -0.950129
422 0.319091 0.024989
659 -0.665218 -0.935685
51 -0.126134 -0.561595
684 0.690296 -0.708659
.. ... ...
874 1.230203 -0.603460
146 -1.177943 -0.942170
162 2.402717 -2.278847
972 -0.750448 -1.260879
426 -0.357662 -0.856433
[1000 rows x 9 columns], 'y': 181 13.569762
422 11.141529
659 4.772285
51 8.374283
684 11.451222
...
874 16.052226
146 3.922772
162 17.934588
972 10.333966
426 8.947595
Name: y, Length: 1000, dtype: float64, 'treatment': 181 True
422 True
659 True
51 True
684 True
...
874 True
146 True
162 True
972 True
426 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9047
INFO:causalml: RMSE (Treatment): 0.9695
INFO:causalml: sMAPE (Control): 0.4927
INFO:causalml: sMAPE (Treatment): 0.1624
INFO:causalml: Gini (Control): 0.7019
INFO:causalml: Gini (Treatment): 0.9864
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
716 -1.615944 1.592631 -1.577118 -0.974178 1.417172 -0.195000 0.312512
774 -0.886076 0.195586 0.455056 -0.785569 0.251063 -1.413741 0.262704
272 -3.301648 0.553178 0.159603 2.046934 -0.388566 -1.527966 1.482174
443 -2.529796 1.084026 -0.819423 0.035893 0.753495 0.483814 -0.069741
854 -2.523311 -0.010257 -0.769967 -0.177994 0.185291 -0.178115 0.296577
.. ... ... ... ... ... ... ...
614 -2.386008 1.131412 -0.505893 0.004830 0.101923 -0.350414 -0.390763
826 -1.751728 1.126503 -0.508416 0.008477 -0.550763 -2.243036 0.627975
279 -2.061036 -0.503615 -0.241566 -0.116680 0.053960 0.623388 1.384687
24 -0.551295 0.322400 -1.152389 1.649997 -2.529414 -1.033174 0.650334
312 -0.728990 -0.366328 0.830242 0.664962 -0.175745 -0.044821 0.803275
X0 X1
716 0.312512 -0.195000
774 0.262704 -1.413741
272 1.482174 -1.527966
443 -0.069741 0.483814
854 0.296577 -0.178115
.. ... ...
614 -0.390763 -0.350414
826 0.627975 -2.243036
279 1.384687 0.623388
24 0.650334 -1.033174
312 0.803275 -0.044821
[1000 rows x 9 columns], 'y': 716 9.358799
774 6.080336
272 -7.247960
443 6.116446
854 -8.250436
...
614 -5.992837
826 3.753175
279 -6.155145
24 -7.244556
312 10.376441
Name: y, Length: 1000, dtype: float64, 'treatment': 716 True
774 True
272 False
443 True
854 False
...
614 False
826 True
279 False
24 False
312 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
148 -0.427906 -0.348349 -1.414734 -0.840811 -1.436732 -1.544825 1.050592
683 -0.565221 -1.461757 -1.292868 0.617291 0.720147 0.269804 0.479413
782 -0.683582 2.220805 -0.634412 1.335696 -1.692552 -0.549927 2.153804
323 -1.189912 1.017885 -1.046517 -0.238839 -0.588009 0.098981 0.492976
229 -1.566769 1.166166 0.379113 1.564834 0.393456 0.321811 3.489682
.. ... ... ... ... ... ... ...
303 -1.802541 1.155115 0.033706 1.224001 0.978380 -0.626800 0.580053
356 -1.116602 0.982596 -0.581222 -0.520757 -0.778744 0.510570 1.240015
180 -0.755650 0.531365 -1.277980 -1.074982 1.894625 -0.207842 0.434392
117 -2.281886 0.960677 -2.020716 -1.229467 -1.118221 -0.754915 0.968480
216 -1.445130 1.697550 -2.520408 -0.942383 -0.658474 -1.404127 0.107552
X0 X1
148 1.050592 -1.544825
683 0.479413 0.269804
782 2.153804 -0.549927
323 0.492976 0.098981
229 3.489682 0.321811
.. ... ...
303 0.580053 -0.626800
356 1.240015 0.510570
180 0.434392 -0.207842
117 0.968480 -0.754915
216 0.107552 -1.404127
[1000 rows x 9 columns], 'y': 148 4.946877
683 -0.955793
782 14.584633
323 6.435152
229 21.267379
...
303 11.687300
356 -4.713297
180 12.418586
117 -11.180244
216 2.376140
Name: y, Length: 1000, dtype: float64, 'treatment': 148 True
683 False
782 True
323 True
229 True
...
303 True
356 False
180 True
117 False
216 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0486
INFO:causalml: RMSE (Treatment): 0.9171
INFO:causalml: sMAPE (Control): 0.5529
INFO:causalml: sMAPE (Treatment): 0.1573
INFO:causalml: Gini (Control): 0.7084
INFO:causalml: Gini (Treatment): 0.9884
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0082
INFO:causalml: RMSE (Treatment): 0.9557
INFO:causalml: sMAPE (Control): 0.5230
INFO:causalml: sMAPE (Treatment): 0.1729
INFO:causalml: Gini (Control): 0.7377
INFO:causalml: Gini (Treatment): 0.9884
{'X': W4 W2 W1 W3 W0 X1 X0 \
168 0.450300 1.390503 0.155373 -1.101036 -0.952799 -0.887511 1.430561
176 -0.856629 1.249011 0.865558 0.345553 -2.692244 -0.310500 -0.444710
712 -0.384708 1.043094 -0.342221 1.242046 -0.192181 -0.562779 -1.078074
540 -1.489472 1.850874 -0.563384 0.019167 2.261024 0.812529 1.334890
243 -3.249216 -0.470659 0.290909 1.619751 -1.136002 -0.305133 0.820941
.. ... ... ... ... ... ... ...
78 -1.204209 0.126061 0.575761 1.962184 -2.467364 -0.763519 -0.076058
578 -0.204916 -0.336268 -0.512652 -0.557115 -0.290550 -0.190070 0.805354
580 0.010203 1.941732 -0.233593 0.219375 0.073492 -2.284840 -0.308323
967 -1.474196 1.682763 -1.012478 1.377707 -0.535955 -3.259822 1.413777
878 -1.217552 2.664742 -2.231582 1.034746 -0.096639 -1.053233 0.765971
X0 X1
168 1.430561 -0.887511
176 -0.444710 -0.310500
712 -1.078074 -0.562779
540 1.334890 0.812529
243 0.820941 -0.305133
.. ... ...
78 -0.076058 -0.763519
578 0.805354 -0.190070
580 -0.308323 -2.284840
967 1.413777 -3.259822
878 0.765971 -1.053233
[1000 rows x 9 columns], 'y': 168 13.539036
176 0.810587
712 6.780320
540 19.517995
243 -10.483545
...
78 2.567970
578 -2.946371
580 8.433110
967 -2.657495
878 11.079847
Name: y, Length: 1000, dtype: float64, 'treatment': 168 True
176 True
712 True
540 True
243 False
...
78 True
578 False
580 True
967 False
878 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9013
INFO:causalml: RMSE (Treatment): 0.9553
INFO:causalml: sMAPE (Control): 0.5311
INFO:causalml: sMAPE (Treatment): 0.1842
INFO:causalml: Gini (Control): 0.7100
INFO:causalml: Gini (Treatment): 0.9884
{'X': W4 W2 W1 W3 W0 X1 X0 \
787 0.073705 2.848665 -1.943361 -1.359323 -0.878067 -0.436985 -0.313540
906 -1.575434 0.723096 0.059694 2.122850 0.024433 0.756446 0.800562
782 -0.746773 2.414147 -0.784415 1.453598 -1.809795 -0.543201 2.299416
357 -0.378320 -0.884596 -0.669495 -0.885519 -0.360368 0.592724 -0.790022
242 -1.792347 1.490790 -2.219958 0.454298 1.183930 -1.147240 -1.586327
.. ... ... ... ... ... ... ...
5 0.099175 -0.058453 -0.246124 -1.474818 -0.040728 -1.233210 -0.794351
557 0.204105 -0.449736 0.150027 1.430447 -1.525944 -1.113027 -0.164975
545 -1.038618 2.006304 0.732717 1.104913 0.596121 0.500374 0.898176
833 0.101179 0.209330 0.769188 1.227717 -0.727485 -1.215284 1.049029
691 -0.929421 1.731717 0.245810 1.374453 -1.257481 -2.478499 1.097686
X0 X1
787 -0.313540 -0.436985
906 0.800562 0.756446
782 2.299416 -0.543201
357 -0.790022 0.592724
242 -1.586327 -1.147240
.. ... ...
5 -0.794351 -1.233210
557 -0.164975 -1.113027
545 0.898176 0.500374
833 1.049029 -1.215284
691 1.097686 -2.478499
[1000 rows x 9 columns], 'y': 787 7.397373
906 11.554534
782 14.584633
357 4.629609
242 1.894728
...
5 4.741680
557 5.886610
545 15.065277
833 13.445887
691 9.514980
Name: y, Length: 1000, dtype: float64, 'treatment': 787 True
906 True
782 True
357 True
242 True
...
5 True
557 True
545 True
833 True
691 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9654
INFO:causalml: RMSE (Treatment): 0.9024
INFO:causalml: sMAPE (Control): 0.5116
INFO:causalml: sMAPE (Treatment): 0.1687
INFO:causalml: Gini (Control): 0.6677
INFO:causalml: Gini (Treatment): 0.9897
{'X': W4 W2 W1 W3 W0 X1 X0 \
896 -2.465205 -0.999605 1.043228 0.318869 -1.465928 -0.503822 -1.540073
924 -1.012879 1.098058 -0.604224 -1.358602 -0.086915 1.405343 1.440895
512 -1.440033 1.671872 1.455479 2.996854 -1.379065 -1.149984 0.578248
426 -0.315671 1.199681 -0.931325 -0.273054 0.861289 -0.838370 -0.409759
896 -2.555420 -0.866699 1.067359 0.461713 -1.476452 -0.242811 -1.659653
.. ... ... ... ... ... ... ...
507 -1.437455 -0.337114 -1.649122 0.872149 -1.304679 -2.133027 0.785621
204 -1.476774 1.668028 -1.614169 0.703887 1.188127 0.282770 2.283149
170 -1.251671 2.617097 -1.391555 0.287190 -0.554072 -0.494777 -0.731169
406 -1.799370 0.523082 -0.214739 -0.356074 0.020431 1.217244 0.629496
96 1.225402 0.765896 -0.047135 1.089486 -1.500370 -1.094204 0.803605
X0 X1
896 -1.540073 -0.503822
924 1.440895 1.405343
512 0.578248 -1.149984
426 -0.409759 -0.838370
896 -1.659653 -0.242811
.. ... ...
507 0.785621 -2.133027
204 2.283149 0.282770
170 -0.731169 -0.494777
406 0.629496 1.217244
96 0.803605 -1.094204
[1000 rows x 9 columns], 'y': 896 -7.004058
924 12.759503
512 8.367137
426 8.947595
896 -7.004058
...
507 -8.258449
204 18.498160
170 -2.441764
406 9.585905
96 14.140134
Name: y, Length: 1000, dtype: float64, 'treatment': 896 True
924 True
512 True
426 True
896 True
...
507 False
204 True
170 False
406 True
96 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9740
INFO:causalml: RMSE (Treatment): 0.9701
INFO:causalml: sMAPE (Control): 0.5245
INFO:causalml: sMAPE (Treatment): 0.1888
INFO:causalml: Gini (Control): 0.7661
INFO:causalml: Gini (Treatment): 0.9887
{'X': W4 W2 W1 W3 W0 X1 X0 \
531 -1.254262 -0.167187 -1.118310 0.614412 1.198764 -0.896836 -0.290468
740 -1.758760 0.145873 -0.995149 1.417127 0.854187 -0.493563 1.956534
484 -2.266697 0.849631 -1.660032 -0.689205 0.906942 -1.756428 -1.829463
978 -0.867775 2.183924 0.075721 0.981680 0.330304 -0.403923 2.232607
381 0.283811 0.106543 -0.055161 -1.052739 -1.024427 -0.208798 -1.355256
.. ... ... ... ... ... ... ...
846 -1.635453 -0.271491 0.831266 0.243038 0.620326 0.957903 1.160719
314 -0.826652 -0.553605 -2.421504 0.298919 0.060331 -2.639562 1.210031
331 -1.054795 1.357207 -1.162656 0.466176 0.407668 -1.780166 0.733555
532 -0.925465 1.279058 -0.889965 -0.707787 -0.241389 -1.093723 0.034877
147 -2.132299 2.078401 -2.857642 -0.986338 0.869850 -0.541032 1.487452
X0 X1
531 -0.290468 -0.896836
740 1.956534 -0.493563
484 -1.829463 -1.756428
978 2.232607 -0.403923
381 -1.355256 -0.208798
.. ... ...
846 1.160719 0.957903
314 1.210031 -2.639562
331 0.733555 -1.780166
532 0.034877 -1.093723
147 1.487452 -0.541032
[1000 rows x 9 columns], 'y': 531 7.735845
740 15.715393
484 -3.918315
978 19.702763
381 2.059536
...
846 12.705539
314 -3.811119
331 10.231377
532 5.559274
147 10.091404
Name: y, Length: 1000, dtype: float64, 'treatment': 531 True
740 True
484 True
978 True
381 True
...
846 True
314 False
331 True
532 True
147 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.2477
INFO:causalml: RMSE (Treatment): 1.0436
INFO:causalml: sMAPE (Control): 0.5956
INFO:causalml: sMAPE (Treatment): 0.1984
INFO:causalml: Gini (Control): 0.6722
INFO:causalml: Gini (Treatment): 0.9865
{'X': W4 W2 W1 W3 W0 X1 X0 \
203 -1.114096 0.744064 -0.690975 0.599358 -0.792642 -1.637673 -0.397490
257 -2.323848 3.016880 -1.700118 1.013322 -0.844318 0.618392 -0.839909
538 -1.038158 2.444865 0.094385 1.527320 1.919538 -1.951172 0.524453
990 -0.000793 0.988923 -0.186809 0.210013 -1.229710 0.232132 -0.020338
731 -0.803858 1.991449 -1.228869 0.189832 -0.297466 -0.369540 1.348036
.. ... ... ... ... ... ... ...
315 -0.833272 0.226528 1.212836 1.772068 0.227297 -0.380696 -0.006080
640 -1.671057 1.467272 -0.375628 1.326509 -1.537542 -0.711127 0.021974
878 -0.962893 2.730247 -2.113489 0.862045 -0.149434 -1.135810 1.112920
610 -0.524884 1.540807 -0.035025 -0.035810 -1.185091 -0.813191 0.907323
385 0.165748 -0.396830 -0.189713 0.224653 -1.901237 -1.310045 -0.920344
X0 X1
203 -0.397490 -1.637673
257 -0.839909 0.618392
538 0.524453 -1.951172
990 -0.020338 0.232132
731 1.348036 -0.369540
.. ... ...
315 -0.006080 -0.380696
640 0.021974 -0.711127
878 1.112920 -1.135810
610 0.907323 -0.813191
385 -0.920344 -1.310045
[1000 rows x 9 columns], 'y': 203 -4.155357
257 2.568588
538 16.761939
990 8.714440
731 13.912472
...
315 11.545213
640 3.839554
878 11.079847
610 9.248446
385 -1.265529
Name: y, Length: 1000, dtype: float64, 'treatment': 203 False
257 True
538 True
990 True
731 True
...
315 True
640 True
878 True
610 True
385 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9891
INFO:causalml: RMSE (Treatment): 0.9589
INFO:causalml: sMAPE (Control): 0.5070
INFO:causalml: sMAPE (Treatment): 0.1700
INFO:causalml: Gini (Control): 0.7410
INFO:causalml: Gini (Treatment): 0.9883
{'X': W4 W2 W1 W3 W0 X1 X0 \
584 -0.774744 0.506187 0.455158 0.141210 0.990320 1.628572 -0.711597
841 -0.724696 -0.374489 -1.103751 1.129970 0.018946 -1.663767 0.567341
885 -2.180824 -0.176545 -1.411294 0.282502 -1.568631 0.486085 0.855786
288 -2.020792 1.845664 0.351894 0.727023 -1.539883 0.047874 0.409374
207 -1.188113 0.958327 1.154980 0.336073 1.815925 -2.040130 0.659767
.. ... ... ... ... ... ... ...
352 -0.535340 -0.482681 2.379011 0.602865 -0.376757 0.429827 -0.246536
56 -0.256722 0.790392 -1.288484 -0.016408 -0.773910 -0.151304 0.797364
260 -2.400965 -1.351992 -1.401867 0.351487 0.142640 -1.172623 -1.246456
265 -0.624554 2.322689 0.829394 -1.257380 -0.054393 -0.181632 -0.055043
434 -1.176635 1.246362 0.634036 -0.149590 -0.657726 -2.223801 -0.233063
X0 X1
584 -0.711597 1.628572
841 0.567341 -1.663767
885 0.855786 0.486085
288 0.409374 0.047874
207 0.659767 -2.040130
.. ... ...
352 -0.246536 0.429827
56 0.797364 -0.151304
260 -1.246456 -1.172623
265 -0.055043 -0.181632
434 -0.233063 -2.223801
[1000 rows x 9 columns], 'y': 584 11.093724
841 9.168319
885 -11.199742
288 5.235864
207 13.068250
...
352 8.970110
56 -1.924324
260 -8.117300
265 9.003069
434 1.849930
Name: y, Length: 1000, dtype: float64, 'treatment': 584 True
841 True
885 False
288 True
207 True
...
352 True
56 False
260 False
265 True
434 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.8899
INFO:causalml: RMSE (Treatment): 0.8863
INFO:causalml: sMAPE (Control): 0.5197
INFO:causalml: sMAPE (Treatment): 0.1595
INFO:causalml: Gini (Control): 0.7407
INFO:causalml: Gini (Treatment): 0.9895
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
941 -0.797345 2.665011 0.065694 -0.869696 -0.413973 -0.687528 0.939537
340 0.395646 2.063995 -0.674216 -0.736351 0.536852 -0.722070 1.665084
303 -1.670465 1.107357 -0.022130 1.189194 0.769526 -0.515271 0.865204
365 -0.221781 -0.295120 0.899051 0.889803 0.424290 -1.638042 1.211189
473 -2.054937 3.017625 0.240892 0.295945 -1.512661 -1.911661 0.565662
.. ... ... ... ... ... ... ...
193 -0.518369 1.617026 -1.830014 -0.741120 -0.465983 -1.906328 0.215485
21 -0.773907 1.110886 -0.544079 1.006438 -0.060069 -1.772730 -0.347305
667 -2.226760 0.866911 0.115075 1.460086 -0.182291 0.234942 1.711669
754 -1.061954 -0.022086 -0.504810 1.309105 0.785156 -0.609433 0.176682
110 -1.835672 2.334799 -0.523204 1.565468 -0.553570 0.776834 1.039780
X0 X1
941 0.939537 -0.687528
340 1.665084 -0.722070
303 0.865204 -0.515271
365 1.211189 -1.638042
473 0.565662 -1.911661
.. ... ...
193 0.215485 -1.906328
21 -0.347305 -1.772730
667 1.711669 0.234942
754 0.176682 -0.609433
110 1.039780 0.776834
[1000 rows x 9 columns], 'y': 941 9.630585
340 18.529106
303 11.687300
365 15.195618
473 2.964870
...
193 5.787386
21 6.406231
667 11.985876
754 9.673575
110 11.934711
Name: y, Length: 1000, dtype: float64, 'treatment': 941 True
340 True
303 True
365 True
473 True
...
193 True
21 True
667 True
754 True
110 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9757
INFO:causalml: RMSE (Treatment): 0.9511
INFO:causalml: sMAPE (Control): 0.5335
INFO:causalml: sMAPE (Treatment): 0.1826
INFO:causalml: Gini (Control): 0.7234
INFO:causalml: Gini (Treatment): 0.9876
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
{'X': W4 W2 W1 W3 W0 X1 X0 \
439 -0.777678 0.791216 0.088420 -0.890809 -2.096758 -2.250654 -0.541533
448 -1.966394 0.687084 -1.596052 0.310020 1.635333 -0.303399 -0.488773
737 -0.437622 0.229345 -0.010522 0.433842 -1.561250 -1.020391 0.680363
458 -1.283245 -0.238230 -0.732136 1.453553 -1.122988 0.246707 0.593596
507 -1.573522 -0.282174 -1.553324 1.126635 -1.519532 -1.805382 1.103591
.. ... ... ... ... ... ... ...
689 -2.157866 1.144691 -1.437880 -2.358650 -1.930470 -2.442867 -0.507167
817 0.535492 1.129122 -0.785106 0.005089 0.605181 -0.155125 1.160599
979 -1.119402 -0.292695 0.065637 1.221340 1.164068 -0.975426 0.551811
447 -0.452422 0.225148 -0.548859 -0.857193 -0.796498 -1.718787 0.004224
318 -0.436870 -0.478021 -0.215719 -0.049107 1.442010 -0.572800 -0.385856
X0 X1
439 -0.541533 -2.250654
448 -0.488773 -0.303399
737 0.680363 -1.020391
458 0.593596 0.246707
507 1.103591 -1.805382
.. ... ...
689 -0.507167 -2.442867
817 1.160599 -0.155125
979 0.551811 -0.975426
447 0.004224 -1.718787
318 -0.385856 -0.572800
[1000 rows x 9 columns], 'y': 439 -2.654670
448 -0.866495
737 6.679250
458 7.125670
507 -8.258449
...
689 -13.994008
817 17.203287
979 10.393456
447 3.661764
318 10.068543
Name: y, Length: 1000, dtype: float64, 'treatment': 439 True
448 False
737 True
458 True
507 False
...
689 False
817 True
979 True
447 True
318 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1156
INFO:causalml: RMSE (Treatment): 1.0473
INFO:causalml: sMAPE (Control): 0.5300
INFO:causalml: sMAPE (Treatment): 0.1864
INFO:causalml: Gini (Control): 0.7404
INFO:causalml: Gini (Treatment): 0.9859
{'X': W4 W2 W1 W3 W0 X1 X0 \
517 -1.249075 0.028192 -0.076209 1.228302 -0.889615 -0.970315 1.053813
1 -0.598908 0.552677 -0.987892 1.753865 -1.047326 0.827995 0.683017
401 -1.902249 1.609008 -1.650454 1.139514 -0.243655 0.337020 0.009184
305 -2.290212 2.079516 1.762446 -1.346023 -0.321697 -0.296516 1.240990
219 -0.424078 -0.746495 -0.269375 1.026374 0.569689 -2.044241 0.193521
.. ... ... ... ... ... ... ...
367 -1.119150 0.790038 -2.083099 0.272993 -2.106983 0.511889 -0.991478
124 -0.979415 2.388193 0.461914 0.399532 0.582675 -0.175566 -0.247623
857 -0.958933 0.848727 -0.274051 -0.994394 -0.419030 -0.062599 -0.356535
946 -0.035807 1.000916 0.683003 1.705651 -0.522502 -1.759322 1.789445
421 -2.133503 0.248461 -0.560940 -0.426672 -0.211597 0.784156 -1.712237
X0 X1
517 1.053813 -0.970315
1 0.683017 0.827995
401 0.009184 0.337020
305 1.240990 -0.296516
219 0.193521 -2.044241
.. ... ...
367 -0.991478 0.511889
124 -0.247623 -0.175566
857 -0.356535 -0.062599
946 1.789445 -1.759322
421 -1.712237 0.784156
[1000 rows x 9 columns], 'y': 517 -4.981074
1 11.125450
401 7.798611
305 7.299002
219 8.839168
...
367 -8.836089
124 10.147994
857 4.361211
946 16.526801
421 -2.608507
Name: y, Length: 1000, dtype: float64, 'treatment': 517 False
1 True
401 True
305 True
219 True
...
367 False
124 True
857 True
946 True
421 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0421
INFO:causalml: RMSE (Treatment): 1.0731
INFO:causalml: sMAPE (Control): 0.5423
INFO:causalml: sMAPE (Treatment): 0.1840
INFO:causalml: Gini (Control): 0.7539
{'X': W4 W2 W1 W3 W0 X1 X0 \
724 -1.186624 -0.204969 0.236915 0.421616 -0.619602 0.457596 0.993188
386 0.351171 2.087307 2.341325 0.002534 -1.115900 1.480497 -0.390224
53 -2.973900 0.733783 -0.604958 0.645836 -0.335077 -1.900429 2.401266
298 -1.414364 1.106476 0.190108 -2.115642 -1.068247 0.043662 0.829619
365 -0.035523 -0.341759 0.678484 0.982625 0.282776 -1.789647 1.250139
.. ... ... ... ... ... ... ...
217 -1.002155 0.954097 0.201586 0.415424 -1.836686 -1.940836 -0.566890
480 -0.434488 0.173672 0.399111 1.491822 0.365539 0.256138 0.889867
39 -0.999988 1.230452 -1.692300 -0.961869 -1.179618 0.079984 1.729389
327 -1.328455 1.163397 -1.333196 1.018846 -2.697315 -1.532378 0.907498
318 -0.506408 -0.658883 -0.359665 -0.030377 1.475936 -0.510247 -0.247610
X0 X1
724 0.993188 0.457596
386 -0.390224 1.480497
53 2.401266 -1.900429
298 0.829619 0.043662
365 1.250139 -1.789647
.. ... ...
217 -0.566890 -1.940836
480 0.889867 0.256138
39 1.729389 0.079984
327 0.907498 -1.532378
318 -0.247610 -0.510247
[1000 rows x 9 columns], 'y': 724 7.856564
386 11.776341
53 7.558222
298 5.375935
365 15.195618
...
217 -0.259780
480 15.267030
39 -6.109185
327 1.918859
318 10.068543
Name: y, Length: 1000, dtype: float64, 'treatment': 724 True
386 True
53 True
298 True
365 True
...
217 True
480 True
39 False
327 True
318 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: Gini (Treatment): 0.9853
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9553
INFO:causalml: RMSE (Treatment): 0.9546
INFO:causalml: sMAPE (Control): 0.5796
INFO:causalml: sMAPE (Treatment): 0.1537
INFO:causalml: Gini (Control): 0.7471
INFO:causalml: Gini (Treatment): 0.9884
{'X': W4 W2 W1 W3 W0 X1 X0 \
207 -1.366234 1.181501 1.211633 0.365055 1.568180 -2.136057 0.943552
469 -1.830332 0.130032 0.392897 -1.851040 -0.910172 -1.795773 2.143216
210 -0.290128 0.926269 1.449719 1.449915 0.314409 -1.436922 -1.237186
477 -2.716049 0.919646 -0.058762 1.140785 -1.477922 -1.039523 1.901640
587 -0.913343 -0.338004 0.824561 1.785646 -0.630247 -0.794141 1.563777
.. ... ... ... ... ... ... ...
358 -1.690018 0.297790 -0.583945 1.387763 -1.053933 -0.484870 0.193280
998 -0.132933 0.842204 -1.539580 -0.012722 -1.320756 0.959635 1.889926
262 -1.701307 -1.234552 -0.291712 1.306074 0.636205 -0.594167 0.592119
846 -1.812872 -0.339279 0.842863 0.273237 0.789526 1.046829 1.325270
295 -0.991002 1.251465 -1.432965 0.507186 -1.377766 0.438091 1.324539
X0 X1
207 0.943552 -2.136057
469 2.143216 -1.795773
210 -1.237186 -1.436922
477 1.901640 -1.039523
587 1.563777 -0.794141
.. ... ...
358 0.193280 -0.484870
998 1.889926 0.959635
262 0.592119 -0.594167
846 1.325270 1.046829
295 1.324539 0.438091
[1000 rows x 9 columns], 'y': 207 13.068250
469 4.435916
210 7.048680
477 7.037455
587 12.208485
...
358 3.577322
998 13.321122
262 7.461448
846 12.705539
295 9.933260
Name: y, Length: 1000, dtype: float64, 'treatment': 207 True
469 True
210 True
477 True
587 True
...
358 True
998 True
262 True
846 True
295 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1203
INFO:causalml: RMSE (Treatment): 0.9173
INFO:causalml: sMAPE (Control): 0.5700
INFO:causalml: sMAPE (Treatment): 0.1799
INFO:causalml: Gini (Control): 0.7873
INFO:causalml: Gini (Treatment): 0.9906
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0168
INFO:causalml: RMSE (Treatment): 0.9727
INFO:causalml: sMAPE (Control): 0.6179
INFO:causalml: sMAPE (Treatment): 0.1711
INFO:causalml: Gini (Control): 0.7324
INFO:causalml: Gini (Treatment): 0.9886
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
969 -1.335965 0.447648 -0.411083 1.979017 -0.138700 2.367625 1.304766
120 0.878535 1.143899 -0.483360 1.389960 -1.129051 -0.036144 0.322280
398 -0.544874 1.460350 -1.210807 0.246759 -1.896953 -1.364403 0.295212
962 0.011323 0.505232 -0.851645 -0.691518 -0.815307 -2.475926 -0.811474
969 -1.471246 0.725484 -0.285822 1.968396 0.098097 2.035384 1.534909
.. ... ... ... ... ... ... ...
156 -2.062858 1.654820 -0.039749 0.633792 -1.023244 -0.324959 1.014639
996 -2.996934 1.835326 -0.415804 1.731529 1.114039 1.000899 1.966124
283 -2.445636 0.615026 -0.362207 -0.613346 1.228393 -1.540628 0.829009
15 -2.063208 1.203270 0.445253 0.477875 -2.216014 -0.031189 0.820581
590 -1.171838 0.232455 0.198807 1.170847 0.340350 0.982074 1.019249
X0 X1
969 1.304766 2.367625
120 0.322280 -0.036144
398 0.295212 -1.364403
962 -0.811474 -2.475926
969 1.534909 2.035384
.. ... ...
156 1.014639 -0.324959
996 1.966124 1.000899
283 0.829009 -1.540628
15 0.820581 -0.031189
590 1.019249 0.982074
[1000 rows x 9 columns], 'y': 969 17.059856
120 13.587443
398 -5.105764
962 1.353868
969 17.059856
...
156 6.574194
996 17.211685
283 7.081134
15 2.255591
590 13.717742
Name: y, Length: 1000, dtype: float64, 'treatment': 969 True
120 True
398 False
962 True
969 True
...
156 True
996 True
283 True
15 True
590 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
762 0.106489 0.709110 -0.977151 0.408870 -0.997734 0.051829 2.205049
561 -0.582679 -0.252048 -0.449171 1.288204 -2.428243 0.213163 1.199164
771 -1.581360 0.727476 0.228220 0.436623 0.611546 1.617179 2.021509
457 -1.325958 1.534327 -0.725483 1.753939 -2.868028 -1.354123 0.004881
665 -2.154642 0.336701 -0.127727 -0.622155 0.322338 -0.912627 -0.105646
.. ... ... ... ... ... ... ...
496 -0.207431 0.517641 -0.880719 1.426367 -0.957096 -0.597891 -0.460067
761 -1.782044 -0.230445 -0.712217 -1.423460 0.959061 -0.572837 1.033045
799 -1.173348 0.516625 1.728205 0.736736 -0.216253 0.221584 3.380923
456 -1.039482 1.682213 0.772552 1.290649 0.140001 0.468885 0.540177
489 -0.254097 -1.425958 -0.688945 0.426641 0.148577 -0.933015 -1.321576
X0 X1
762 2.205049 0.051829
561 1.199164 0.213163
771 2.021509 1.617179
457 0.004881 -1.354123
665 -0.105646 -0.912627
.. ... ...
496 -0.460067 -0.597891
761 1.033045 -0.572837
799 3.380923 0.221584
456 0.540177 0.468885
489 -1.321576 -0.933015
[1000 rows x 9 columns], 'y': 762 17.175897
561 8.271140
771 18.593729
457 -8.028104
665 2.331887
...
496 5.574781
761 7.959767
799 21.395850
456 12.752919
489 2.992182
Name: y, Length: 1000, dtype: float64, 'treatment': 762 True
561 True
771 True
457 False
665 True
...
496 True
761 True
799 True
456 True
489 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0600
INFO:causalml: RMSE (Treatment): 0.9813
INFO:causalml: sMAPE (Control): 0.5765
INFO:causalml: sMAPE (Treatment): 0.1614
INFO:causalml: Gini (Control): 0.7312
INFO:causalml: Gini (Treatment): 0.9879
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0749
{'X': W4 W2 W1 W3 W0 X1 X0 \
982 -0.794501 0.663315 -0.444807 -0.869413 0.874432 -1.410284 1.245162
154 -1.522914 2.547789 0.958373 -0.742162 0.153355 0.081442 0.369015
810 -0.413913 0.523270 0.026244 0.698672 -0.373440 -0.178206 -0.843674
130 -0.300918 0.222057 -1.254998 1.360267 -0.882821 -0.874269 0.547756
268 0.108036 -0.440682 0.323611 0.832749 -0.207856 -1.020580 -1.452514
.. ... ... ... ... ... ... ...
934 -2.424483 1.343930 -0.123170 1.154069 -1.879578 -1.717017 1.443784
818 -2.141950 1.077866 -0.176088 0.295325 -2.526841 -0.678777 0.773618
732 -1.838668 1.864397 -0.393074 0.704162 -0.116134 -0.980395 2.071491
646 -0.691894 0.965563 0.295157 1.679703 -1.580214 -0.537919 0.595561
679 -1.193441 1.345853 0.874096 -0.725893 -1.256080 0.695600 0.692764
X0 X1
982 1.245162 -1.410284
154 0.369015 0.081442
810 -0.843674 -0.178206
130 0.547756 -0.874269
268 -1.452514 -1.020580
.. ... ...
934 1.443784 -1.717017
818 0.773618 -0.678777
732 2.071491 -0.980395
646 0.595561 -0.537919
679 0.692764 0.695600
[1000 rows x 9 columns], 'y': 982 12.003112
154 9.367612
810 5.956647
130 9.234615
268 3.465358
...
934 2.331482
818 -11.770683
732 -3.133831
646 9.399353
679 6.809382
Name: y, Length: 1000, dtype: float64, 'treatment': 982 True
154 True
810 True
130 True
268 True
...
934 True
818 False
732 False
646 True
679 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
332 -1.296487 0.315159 -0.917615 1.194753 0.499105 0.293720 1.602796
344 -2.449548 1.486259 -0.160623 -0.389842 -1.081393 -0.050959 1.996267
486 -0.270020 -0.394789 -0.572976 0.377000 0.966363 -1.171396 0.454287
23 -1.579551 0.179087 -0.682078 0.198108 0.152373 0.692088 2.098798
873 -0.179652 -0.287899 0.680093 0.701952 -1.191745 -1.905421 0.095141
.. ... ... ... ... ... ... ...
241 -0.858343 2.347961 -0.871282 1.778801 0.129180 -2.613692 -0.315300
991 -0.297982 0.682839 0.031873 -0.980435 -2.292614 -0.267537 2.225250
737 -0.361140 0.059002 -0.221684 0.200752 -1.620890 -1.393805 1.183499
903 -2.201737 1.581319 0.868458 0.735588 0.787632 1.289393 0.203314
926 1.129385 0.557172 -0.624555 1.080902 -0.720518 -0.244517 0.376367
X0 X1
332 1.602796 0.293720
344 1.996267 -0.050959
486 0.454287 -1.171396
23 2.098798 0.692088
873 0.095141 -1.905421
.. ... ...
241 -0.315300 -2.613692
991 2.225250 -0.267537
737 1.183499 -1.393805
903 0.203314 1.289393
926 0.376367 -0.244517
[1000 rows x 9 columns], 'y': 332 16.296656
344 -9.322258
486 12.711964
23 -4.601417
873 4.499265
...
241 7.793042
991 -7.648859
737 6.679250
903 11.446682
926 13.032000
Name: y, Length: 1000, dtype: float64, 'treatment': 332 True
344 False
486 True
23 False
873 True
...
241 True
991 False
737 True
903 True
926 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: RMSE (Treatment): 1.1122
INFO:causalml: sMAPE (Control): 0.5652
INFO:causalml: sMAPE (Treatment): 0.2127
INFO:causalml: Gini (Control): 0.7542
INFO:causalml: Gini (Treatment): 0.9839
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1086
INFO:causalml: RMSE (Treatment): 1.0436
INFO:causalml: sMAPE (Control): 0.5778
INFO:causalml: sMAPE (Treatment): 0.1765
INFO:causalml: Gini (Control): 0.6881
INFO:causalml: Gini (Treatment): 0.9868
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0219
INFO:causalml: RMSE (Treatment): 0.9830
INFO:causalml: sMAPE (Control): 0.5468
INFO:causalml: sMAPE (Treatment): 0.1661
INFO:causalml: Gini (Control): 0.7412
INFO:causalml: Gini (Treatment): 0.9872
{'X': W4 W2 W1 W3 W0 X1 X0 \
738 -0.484416 1.687269 -1.583798 2.053387 -0.903056 -2.357297 0.762175
403 -1.774697 2.419671 0.581029 0.345242 -2.182253 -0.431024 -1.477473
738 -0.589523 1.673371 -1.640816 2.072849 -0.761020 -2.556119 0.647355
398 -0.430815 1.459252 -1.310444 0.477303 -1.911626 -1.131070 0.406184
540 -1.320015 1.915577 -0.459789 -0.082961 2.080044 0.673359 1.359615
.. ... ... ... ... ... ... ...
185 -0.189739 0.798016 -1.637180 -0.973693 0.515212 -0.479969 -0.733242
903 -2.059504 1.688765 1.129595 0.414466 0.812262 1.673828 0.329361
303 -1.732982 1.160460 0.179380 1.219356 0.864191 -0.416468 0.937511
224 -0.243703 1.430595 -0.902650 -0.183798 -0.514459 -0.550796 1.359030
216 -1.143249 1.699965 -2.537634 -0.834504 -0.963018 -1.343873 0.012237
X0 X1
738 0.762175 -2.357297
403 -1.477473 -0.431024
738 0.647355 -2.556119
398 0.406184 -1.131070
540 1.359615 0.673359
.. ... ...
185 -0.733242 -0.479969
903 0.329361 1.673828
303 0.937511 -0.416468
224 1.359030 -0.550796
216 0.012237 -1.343873
[1000 rows x 9 columns], 'y': 738 8.470271
403 -3.265557
738 8.470271
398 -5.105764
540 19.517995
...
185 -0.302411
903 11.446682
303 11.687300
224 -0.964343
216 2.376140
Name: y, Length: 1000, dtype: float64, 'treatment': 738 True
403 True
738 True
398 False
540 True
...
185 False
903 True
303 True
224 False
216 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
172 -1.043971 1.761026 -1.454093 -0.200212 -0.640173 -1.525210 1.509516
136 -1.924297 -0.274434 -0.917478 1.109700 -0.054534 0.789436 -0.133145
299 -1.192639 0.104373 -0.938420 1.706595 0.154327 -1.158545 -0.509465
13 -1.269414 0.227623 0.692321 -2.352126 -1.858097 -0.389351 -0.227835
876 -0.757699 -0.034899 -0.510357 0.536978 -0.035272 -1.700392 2.046986
.. ... ... ... ... ... ... ...
540 -1.397708 1.894398 -0.492258 0.041512 2.224414 0.784732 1.189514
154 -1.644824 2.600395 0.678450 -0.861557 -0.025366 0.179584 0.538859
678 0.626320 0.739785 -0.184908 0.363249 -1.507676 -0.041604 1.191561
888 -0.079391 0.649108 -1.904946 1.743524 0.441493 -0.063658 1.094585
681 -0.651375 1.471942 0.441373 -1.142466 1.357624 -0.002035 1.670379
X0 X1
172 1.509516 -1.525210
136 -0.133145 0.789436
299 -0.509465 -1.158545
13 -0.227835 -0.389351
876 2.046986 -1.700392
.. ... ...
540 1.189514 0.784732
154 0.538859 0.179584
678 1.191561 -0.041604
888 1.094585 -0.063658
681 1.670379 -0.002035
[1000 rows x 9 columns], 'y': 172 10.160763
136 -4.977571
299 5.614664
13 -2.020044
876 12.555557
...
540 19.517995
154 9.367612
678 13.061989
888 16.906677
681 18.090454
Name: y, Length: 1000, dtype: float64, 'treatment': 172 True
136 False
299 True
13 True
876 True
...
540 True
154 True
678 True
888 True
681 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.2539
INFO:causalml: RMSE (Treatment): 0.9791
INFO:causalml: sMAPE (Control): 0.5269
INFO:causalml: sMAPE (Treatment): 0.1816
INFO:causalml: Gini (Control): 0.7565
INFO:causalml: Gini (Treatment): 0.9892
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0712
INFO:causalml: RMSE (Treatment): 0.9911
INFO:causalml: sMAPE (Control): 0.5510
INFO:causalml: sMAPE (Treatment): 0.1923
INFO:causalml: Gini (Control): 0.7424
INFO:causalml: Gini (Treatment): 0.9883
{'X': W4 W2 W1 W3 W0 X1 X0 \
770 -2.833607 0.247946 -1.054563 -0.451676 -1.223193 0.524625 1.020635
805 -2.511877 -0.416616 -0.952440 -0.180083 0.205770 -2.841067 0.262597
483 -1.372015 0.849386 -0.293284 0.759140 -2.075523 0.228387 0.476496
396 -0.147135 -1.883991 -1.230722 -1.231061 -1.361075 0.330904 0.628008
110 -1.689077 2.282338 -0.370636 1.396179 -0.356844 0.761223 0.814718
.. ... ... ... ... ... ... ...
196 -1.900765 1.142843 -0.900225 -0.632667 -1.317238 -1.090468 0.725665
804 -2.456427 0.834854 -0.079465 1.288538 -1.198145 -0.950941 0.385082
427 0.382613 -0.025500 0.603087 1.308133 -1.791121 -0.510804 2.260320
371 -2.489665 1.949779 -0.742450 -0.413601 -0.449260 0.283632 0.206128
718 -1.214701 1.204254 -2.714157 -0.823141 0.496854 -2.151207 0.308420
X0 X1
770 1.020635 0.524625
805 0.262597 -2.841067
483 0.476496 0.228387
396 0.628008 0.330904
110 0.814718 0.761223
.. ... ...
196 0.725665 -1.090468
804 0.385082 -0.950941
427 2.260320 -0.510804
371 0.206128 0.283632
718 0.308420 -2.151207
[1000 rows x 9 columns], 'y': 770 -12.067607
805 -0.721618
483 5.198246
396 -9.105144
110 11.934711
...
196 1.676450
804 2.906483
427 15.122153
371 4.468847
718 -3.300467
Name: y, Length: 1000, dtype: float64, 'treatment': 770 False
805 True
483 True
396 False
110 True
...
196 True
804 True
427 True
371 True
718 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
563 -0.268443 -0.219708 -2.876535 1.271821 -1.312667 1.280986 0.323887
106 -1.459605 1.569425 0.082599 -0.292869 -1.835696 -2.024142 1.050100
223 -0.733866 0.529961 -0.028252 1.931603 -1.823669 -0.976670 0.713833
27 -0.859815 0.867771 -1.343087 -0.258287 -0.528599 -1.559249 1.140061
960 0.292158 -0.143984 -0.053099 -0.938650 -3.131975 -0.574136 1.483128
.. ... ... ... ... ... ... ...
7 0.169050 1.664113 -1.617550 0.850336 -1.624987 -0.440930 0.929542
961 -1.645919 1.515655 -0.383109 1.373957 -0.598925 -2.405242 0.310820
818 -2.336560 1.184435 -0.133590 0.300783 -2.270370 -0.602481 0.975037
163 -0.801707 0.799981 0.357547 0.710283 -0.733089 -1.185072 0.890325
408 -0.694694 1.651812 -0.792777 0.006787 2.315751 -1.067453 -1.079735
X0 X1
563 0.323887 1.280986
106 1.050100 -2.024142
223 0.713833 -0.976670
27 1.140061 -1.559249
960 1.483128 -0.574136
.. ... ...
7 0.929542 -0.440930
961 0.310820 -2.405242
818 0.975037 -0.602481
163 0.890325 -1.185072
408 -1.079735 -1.067453
[1000 rows x 9 columns], 'y': 563 -5.142521
106 -8.631314
223 6.636087
27 -3.423349
960 4.643805
...
7 -2.646268
961 4.732956
818 -11.770683
163 8.634512
408 10.095428
Name: y, Length: 1000, dtype: float64, 'treatment': 563 False
106 False
223 True
27 False
960 True
...
7 False
961 True
818 False
163 True
408 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.2491
INFO:causalml: RMSE (Treatment): 1.1114
INFO:causalml: sMAPE (Control): 0.5319
{'X': W4 W2 W1 W3 W0 X1 X0 \
962 -0.009677 0.669116 -0.849799 -0.702391 -0.940493 -2.525755 -0.891971
391 -0.341418 0.951311 1.421517 -1.064450 0.707648 0.191544 0.527653
233 0.198885 1.069432 -1.260303 0.733528 0.155105 -1.662024 2.801471
123 -0.912546 1.504504 -0.369505 1.432430 -2.599077 1.204453 -1.314089
91 -1.832020 1.182525 -0.244803 -0.953757 0.600936 -0.634880 0.917622
.. ... ... ... ... ... ... ...
461 -1.360427 -1.914816 0.510510 0.500077 -0.493602 0.787010 0.798915
957 -0.061057 2.683942 -0.213917 0.549708 -1.910918 0.674554 -0.616028
385 0.122655 -0.360919 -0.231994 0.386600 -1.906796 -1.320416 -1.640399
773 -1.300000 -0.390972 -0.684988 -0.244824 -0.678865 -1.006887 -0.164986
59 -2.485758 0.450724 -0.618499 -0.465156 -1.369240 -1.414008 -1.160067
X0 X1
962 -0.891971 -2.525755
391 0.527653 0.191544
233 2.801471 -1.662024
123 -1.314089 1.204453
91 0.917622 -0.634880
.. ... ...
461 0.798915 0.787010
957 -0.616028 0.674554
385 -1.640399 -1.320416
773 -0.164986 -1.006887
59 -1.160067 -1.414008
[1000 rows x 9 columns], 'y': 962 1.353868
391 13.502571
233 21.285516
123 1.168663
91 9.048832
...
461 -6.434741
957 6.531621
385 -1.265529
773 1.630931
59 -11.229570
Name: y, Length: 1000, dtype: float64, 'treatment': 962 True
391 True
233 True
123 True
91 True
...
461 False
957 True
385 True
773 True
59 False
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: sMAPE (Treatment): 0.2131
INFO:causalml: Gini (Control): 0.7332
INFO:causalml: Gini (Treatment): 0.9857
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9914
INFO:causalml: RMSE (Treatment): 1.0505
INFO:causalml: sMAPE (Control): 0.5377
INFO:causalml: sMAPE (Treatment): 0.1699
INFO:causalml: Gini (Control): 0.7488
INFO:causalml: Gini (Treatment): 0.9845
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
404 0.304284 -1.498603 -0.480307 1.267006 -0.620078 0.781348 -0.391429
910 0.456531 1.361552 -1.515220 0.848143 1.245427 -0.631175 1.084272
592 -1.825880 1.633655 -1.557530 0.061253 -0.771143 0.575775 1.090394
820 -0.073384 1.163020 -1.955732 1.416701 -2.601253 1.077416 -0.101785
586 -1.843453 1.412223 -0.709723 0.477786 -1.890833 0.265785 2.900704
.. ... ... ... ... ... ... ...
665 -2.203587 0.162848 -0.052461 -0.901767 0.184596 -0.682588 0.078397
308 -1.094821 0.338785 0.692682 0.770982 1.073404 -0.773410 0.837814
624 -2.036389 -0.353131 -0.077377 1.111249 -1.337650 0.085889 0.918850
588 -1.013102 -0.409262 0.759175 0.322997 -1.904446 -1.039943 0.126042
569 -2.779166 0.520614 0.576555 1.902577 1.473554 -1.378417 2.415496
X0 X1
404 -0.391429 0.781348
910 1.084272 -0.631175
592 1.090394 0.575775
820 -0.101785 1.077416
586 2.900704 0.265785
.. ... ...
665 0.078397 -0.682588
308 0.837814 -0.773410
624 0.918850 0.085889
588 0.126042 -1.039943
569 2.415496 -1.378417
[1000 rows x 9 columns], 'y': 404 -1.323791
910 20.169101
592 7.749983
820 4.660715
586 -8.767996
...
665 2.331887
308 12.604981
624 5.810979
588 -7.223205
569 16.043709
Name: y, Length: 1000, dtype: float64, 'treatment': 404 False
910 True
592 True
820 True
586 False
...
665 True
308 True
624 True
588 False
569 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9916
INFO:causalml: RMSE (Treatment): 1.0002
INFO:causalml: sMAPE (Control): 0.5286
INFO:causalml: sMAPE (Treatment): 0.1753
INFO:causalml: Gini (Control): 0.7347
INFO:causalml: Gini (Treatment): 0.9868
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1868
INFO:causalml: RMSE (Treatment): 1.0344
INFO:causalml: sMAPE (Control): 0.5700
INFO:causalml: sMAPE (Treatment): 0.1891
INFO:causalml: Gini (Control): 0.7466
INFO:causalml: Gini (Treatment): 0.9874
{'X': W4 W2 W1 W3 W0 X1 X0 \
234 0.277636 -0.458319 -1.236754 1.580579 -1.049608 -1.092289 0.073106
892 -1.171172 0.806907 -0.680481 -0.663835 -1.156163 -0.919481 -0.952076
671 -1.789504 2.029038 0.366626 0.671937 -1.483687 -0.112850 -0.811123
833 0.263368 0.184965 0.666979 1.310278 -0.849572 -1.298711 1.324894
304 -0.859428 0.727926 1.667976 2.031498 1.015084 0.994497 1.432807
.. ... ... ... ... ... ... ...
564 -0.722416 -0.238189 -0.521413 1.038525 -0.210707 0.310418 2.076362
894 -0.051398 0.530460 -2.565525 0.448468 -0.949153 -0.288395 1.726858
868 -1.754745 1.130944 -0.308641 -0.052623 -0.531785 -0.459450 1.764856
590 -1.432875 0.242315 -0.043110 1.001279 0.420302 1.061977 1.081231
527 -1.840716 -0.321949 -2.442757 0.317798 0.812937 0.094385 0.851838
X0 X1
234 0.073106 -1.092289
892 -0.952076 -0.919481
671 -0.811123 -0.112850
833 1.324894 -1.298711
304 1.432807 0.994497
.. ... ...
564 2.076362 0.310418
894 1.726858 -0.288395
868 1.764856 -0.459450
590 1.081231 1.061977
527 0.851838 0.094385
[1000 rows x 9 columns], 'y': 234 7.980017
892 -0.915984
671 -6.150284
833 13.445887
304 22.259686
...
564 16.574010
894 -2.776312
868 -6.358042
590 13.717742
527 8.043131
Name: y, Length: 1000, dtype: float64, 'treatment': 234 True
892 True
671 False
833 True
304 True
...
564 True
894 False
868 False
590 True
527 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
892 -1.365191 0.809145 -0.651818 -0.533120 -1.174905 -0.754857 -0.953927
478 -1.009846 1.403938 -1.112725 0.483925 0.288028 -2.041947 1.490763
147 -2.033595 2.003972 -2.905970 -0.874470 0.918767 -0.748644 1.628621
22 0.468947 1.163442 0.184800 3.538828 -0.021932 1.220487 2.210038
955 -0.411135 0.547188 -1.517731 1.258115 1.903441 -0.868937 1.334142
.. ... ... ... ... ... ... ...
503 -1.932080 2.001397 -1.569077 0.379106 0.276418 -0.071977 0.991890
486 -0.153314 -0.096854 -0.783739 0.325289 1.050841 -0.886658 0.377008
848 -1.888484 1.311574 -2.408030 0.264099 -0.420793 -1.231687 0.327405
723 -0.168558 1.249420 0.753321 0.597698 -0.693478 -0.348529 0.523999
78 -1.157900 0.135025 0.432163 1.809337 -2.251005 -0.938530 -0.140407
X0 X1
892 -0.953927 -0.754857
478 1.490763 -2.041947
147 1.628621 -0.748644
22 2.210038 1.220487
955 1.334142 -0.868937
.. ... ...
503 0.991890 -0.071977
486 0.377008 -0.886658
848 0.327405 -1.231687
723 0.523999 -0.348529
78 -0.140407 -0.938530
[1000 rows x 9 columns], 'y': 892 -0.915984
478 11.134846
147 10.091404
22 25.918390
955 18.503792
...
503 -3.163402
486 12.711964
848 -5.747920
723 12.592456
78 2.567970
Name: y, Length: 1000, dtype: float64, 'treatment': 892 True
478 True
147 True
22 True
955 True
...
503 False
486 True
848 False
723 True
78 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1447
INFO:causalml: RMSE (Treatment): 0.9871
INFO:causalml: sMAPE (Control): 0.5226
INFO:causalml: sMAPE (Treatment): 0.1729
INFO:causalml: Gini (Control): 0.6911
INFO:causalml: Gini (Treatment): 0.9871
{'X': W4 W2 W1 W3 W0 X1 X0 \
192 0.013481 0.077942 -0.358307 0.168147 -0.467291 -0.693907 0.667007
417 -0.366190 0.259755 -1.225215 -0.106444 -0.371682 -1.259310 1.718957
799 -1.223681 0.573615 1.814878 0.681714 -0.181330 0.214086 3.431480
286 -0.799104 1.123722 0.147207 0.723531 -1.327644 0.238024 0.305314
498 0.729111 1.362158 0.281377 0.617431 -0.087265 0.119880 0.608881
.. ... ... ... ... ... ... ...
117 -2.231882 0.665366 -1.909693 -1.065803 -1.313906 -0.629881 0.962470
792 -0.774205 0.254451 -0.106932 -1.628313 -0.065050 -0.218405 1.323578
253 -0.250339 0.511999 -0.172158 1.445175 -1.914054 0.621038 0.901125
291 0.333775 -0.137968 -0.339481 0.150972 -0.486684 0.052764 2.652309
463 -1.375221 1.114778 -1.084832 0.642387 0.909748 0.993138 0.657208
X0 X1
192 0.667007 -0.693907
417 1.718957 -1.259310
799 3.431480 0.214086
286 0.305314 0.238024
498 0.608881 0.119880
.. ... ...
117 0.962470 -0.629881
792 1.323578 -0.218405
253 0.901125 0.621038
291 2.652309 0.052764
463 0.657208 0.993138
[1000 rows x 9 columns], 'y': 192 10.887872
417 12.283023
799 21.395850
286 7.882269
498 17.581110
...
117 -11.180244
792 9.683267
253 11.727481
291 18.348778
463 13.719677
Name: y, Length: 1000, dtype: float64, 'treatment': 192 True
417 True
799 True
286 True
498 True
...
117 False
792 True
253 True
291 True
463 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9856
INFO:causalml: RMSE (Treatment): 0.9593
INFO:causalml: sMAPE (Control): 0.5396
INFO:causalml: sMAPE (Treatment): 0.1518
INFO:causalml: Gini (Control): 0.7416
INFO:causalml: Gini (Treatment): 0.9867
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1492
INFO:causalml: RMSE (Treatment): 0.9369
INFO:causalml: sMAPE (Control): 0.5904
{'X': W4 W2 W1 W3 W0 X1 X0 \
813 -2.574793 1.778857 -1.366494 0.361929 0.385444 -1.517934 0.547660
414 -0.709890 0.365473 -3.032579 0.495475 -1.578610 -1.055620 2.481256
395 -1.815771 0.441079 -0.282241 0.386440 1.087325 -1.114349 0.567645
458 -1.367800 -0.075564 -0.649272 1.415704 -1.028008 0.048305 0.511034
204 -1.523569 1.641104 -1.394166 0.432445 1.405679 0.444463 1.984802
.. ... ... ... ... ... ... ...
409 -0.474703 0.299137 1.351608 -0.142418 -0.348057 1.312824 2.057486
846 -1.715347 -0.402672 0.816812 0.259425 0.681951 0.791362 1.367577
662 -0.004893 0.721397 -1.350244 1.319241 -2.629019 -2.145902 -0.150837
508 0.387571 0.618235 1.634774 -1.093117 1.003168 0.543222 1.559748
490 -2.459289 2.497210 -0.739107 0.191121 0.310616 1.609913 1.238706
X0 X1
813 0.547660 -1.517934
414 2.481256 -1.055620
395 0.567645 -1.114349
458 0.511034 0.048305
204 1.984802 0.444463
.. ... ...
409 2.057486 1.312824
846 1.367577 0.791362
662 -0.150837 -2.145902
508 1.559748 0.543222
490 1.238706 1.609913
[1000 rows x 9 columns], 'y': 813 5.390940
414 -6.908901
395 8.681410
458 7.125670
204 18.498160
...
409 17.513846
846 12.705539
662 1.373230
508 19.084238
490 -3.562790
Name: y, Length: 1000, dtype: float64, 'treatment': 813 True
414 False
395 True
458 True
204 True
...
409 True
846 True
662 True
508 True
490 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
491 0.170054 0.365630 -0.436193 0.121649 0.655171 -0.755025 -0.481998
155 0.265491 2.283702 0.416064 1.689635 -0.328769 1.362896 1.004507
644 0.192433 -0.486979 -0.263539 0.925781 -2.334375 0.092650 1.466703
918 -1.677469 1.390816 0.913525 1.070667 -0.519165 -0.050166 1.873531
979 -1.379922 -0.553287 0.201718 1.229420 1.009567 -0.628174 0.494019
.. ... ... ... ... ... ... ...
329 -0.807969 0.144493 0.114449 0.363988 -2.069952 0.209398 2.149941
506 -1.793297 -0.478382 -2.362130 1.851526 -2.501745 -1.469484 0.081321
980 -1.484445 1.470760 -1.486318 -0.797821 -1.396926 0.557199 1.886761
678 0.627820 0.704262 -0.283240 0.380088 -1.533414 0.148136 0.994715
175 -1.276874 0.830585 -0.634198 0.967282 0.198645 -0.826272 2.607876
X0 X1
491 -0.481998 -0.755025
155 1.004507 1.362896
644 1.466703 0.092650
918 1.873531 -0.050166
979 0.494019 -0.628174
.. ... ...
329 2.149941 0.209398
506 0.081321 -1.469484
980 1.886761 0.557199
678 0.994715 0.148136
175 2.607876 -0.826272
[1000 rows x 9 columns], 'y': 491 8.770425
155 19.147114
644 9.476615
918 12.845128
979 10.393456
...
329 10.777317
506 -11.415137
980 9.526360
678 13.061989
175 17.721185
Name: y, Length: 1000, dtype: float64, 'treatment': 491 True
155 True
644 True
918 True
979 True
...
329 True
506 False
980 True
678 True
175 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: sMAPE (Treatment): 0.1664
INFO:causalml: Gini (Control): 0.7113
INFO:causalml: Gini (Treatment): 0.9892
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0798
INFO:causalml: RMSE (Treatment): 0.9780
INFO:causalml: sMAPE (Control): 0.5958
INFO:causalml: sMAPE (Treatment): 0.1848
INFO:causalml: Gini (Control): 0.6842
INFO:causalml: Gini (Treatment): 0.9876
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
189 0.410161 0.131611 1.306199 -0.669237 -3.213176 -0.015185 1.042416
137 -1.888267 0.840921 -1.225961 0.008345 -1.717243 -0.430938 -1.004454
578 -0.187148 -0.657366 -0.529002 -0.708784 -0.369343 -0.096796 1.079143
600 -1.989738 1.197631 -0.709695 0.095892 -1.323674 -0.340022 -0.786717
882 -2.141692 0.421597 -1.563731 -0.476695 0.927827 -1.031005 0.219039
.. ... ... ... ... ... ... ...
241 -0.696679 2.374122 -0.824048 1.787343 0.229680 -2.830965 -0.440137
217 -1.125068 0.957498 0.151769 0.436910 -1.737025 -1.745240 -0.371585
580 -0.140849 2.105249 -0.247492 0.146588 -0.125673 -2.231402 -0.241249
321 -2.075528 0.044587 0.680838 0.326194 -0.586312 -0.547235 0.670399
545 -1.029716 2.032547 0.704595 1.014036 0.594667 0.421423 0.768095
X0 X1
189 1.042416 -0.015185
137 -1.004454 -0.430938
578 1.079143 -0.096796
600 -0.786717 -0.340022
882 0.219039 -1.031005
.. ... ...
241 -0.440137 -2.830965
217 -0.371585 -1.745240
580 -0.241249 -2.231402
321 0.670399 -0.547235
545 0.768095 0.421423
[1000 rows x 9 columns], 'y': 189 5.702358
137 -9.707122
578 -2.946371
600 -2.038553
882 -4.513230
...
241 7.793042
217 -0.259780
580 8.433110
321 -6.946700
545 15.065277
Name: y, Length: 1000, dtype: float64, 'treatment': 189 True
137 False
578 False
600 True
882 False
...
241 True
217 True
580 True
321 False
545 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0771
INFO:causalml: RMSE (Treatment): 0.9774
INFO:causalml: sMAPE (Control): 0.5323
INFO:causalml: sMAPE (Treatment): 0.1741
INFO:causalml: Gini (Control): 0.7203
INFO:causalml: Gini (Treatment): 0.9870
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
143 -1.949957 1.517756 2.204676 1.303316 -0.217841 -1.651990 -0.515243
196 -1.949786 1.115287 -0.853560 -0.572337 -1.419509 -1.086555 0.608502
46 -0.888146 1.092166 -0.582271 0.300130 -1.650112 0.469455 1.900898
9 -0.021802 1.130757 1.080258 -1.120494 -0.771512 0.783945 -0.188939
17 -2.283447 0.963726 0.992729 0.659825 -0.523651 -1.637352 2.110831
.. ... ... ... ... ... ... ...
28 0.284972 -1.725446 -0.542758 -1.319756 -0.151833 -0.471153 -0.210616
273 -0.692795 1.302004 -0.819690 1.466807 -1.801295 -0.348019 -2.020364
162 -1.347888 1.001111 -0.895320 0.433071 1.873425 -2.217724 2.456335
695 -0.281676 -0.435856 -0.023010 0.860228 -0.372742 -1.177590 0.391568
794 -1.175251 -0.572507 -0.484807 0.213518 0.123263 -1.627262 0.296319
X0 X1
143 -0.515243 -1.651990
196 0.608502 -1.086555
46 1.900898 0.469455
9 -0.188939 0.783945
17 2.110831 -1.637352
.. ... ...
28 -0.210616 -0.471153
273 -2.020364 -0.348019
162 2.456335 -2.217724
695 0.391568 -1.177590
794 0.296319 -1.627262
[1000 rows x 9 columns], 'y': 143 3.430961
196 1.676450
46 -6.116730
9 8.755592
17 10.402576
...
28 4.753158
273 -2.115646
162 17.934588
695 8.766754
794 5.470791
Name: y, Length: 1000, dtype: float64, 'treatment': 143 True
196 True
46 False
9 True
17 True
...
28 True
273 True
162 True
695 True
794 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
460 -0.475622 1.378347 0.597975 0.184503 -1.056560 -0.774878 0.997804
270 -0.206312 0.198214 -0.002747 0.136514 -0.920272 -0.790116 -0.029807
787 0.083772 2.897460 -1.819668 -1.691378 -0.779529 -0.571429 -0.318654
363 -1.094109 1.596488 -0.209081 -0.635393 -0.348193 -2.724728 1.738500
394 -1.193673 1.783805 -0.658297 0.524736 0.592888 0.449741 0.668359
.. ... ... ... ... ... ... ...
454 -0.374366 0.308604 -1.075751 0.502187 -1.780666 -0.147872 2.126364
125 -1.513287 -1.100623 -1.587157 -0.180659 -0.209123 -1.245457 -0.609627
441 0.191672 1.544473 -1.272017 -1.240143 -0.223964 0.151050 2.278019
717 0.784248 1.796548 0.804206 -0.405701 -1.511015 -1.543735 -0.785670
503 -2.011356 1.992276 -1.586584 0.628595 0.382689 -0.342653 1.223774
X0 X1
460 0.997804 -0.774878
270 -0.029807 -0.790116
787 -0.318654 -0.571429
363 1.738500 -2.724728
394 0.668359 0.449741
.. ... ...
454 2.126364 -0.147872
125 -0.609627 -1.245457
441 2.278019 0.151050
717 -0.785670 -1.543735
503 1.223774 -0.342653
[1000 rows x 9 columns], 'y': 460 11.172108
270 6.749300
787 7.397373
363 8.937908
394 12.331256
...
454 12.121477
125 -0.052585
441 18.248395
717 6.273750
503 -3.163402
Name: y, Length: 1000, dtype: float64, 'treatment': 460 True
270 True
787 True
363 True
394 True
...
454 True
125 True
441 True
717 True
503 False
Name: v0, Length: 1000, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1074
INFO:causalml: RMSE (Treatment): 1.0417
INFO:causalml: sMAPE (Control): 0.5225
INFO:causalml: sMAPE (Treatment): 0.1999
INFO:causalml: Gini (Control): 0.7209
INFO:causalml: Gini (Treatment): 0.9865
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0059
INFO:causalml: RMSE (Treatment): 1.0071
INFO:causalml: sMAPE (Control): 0.4864
INFO:causalml: sMAPE (Treatment): 0.1695
INFO:causalml: Gini (Control): 0.7898
INFO:causalml: Gini (Treatment): 0.9875
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9534
INFO:causalml: RMSE (Treatment): 1.0334
INFO:causalml: sMAPE (Control): 0.5827
INFO:causalml: sMAPE (Treatment): 0.1975
INFO:causalml: Gini (Control): 0.7350
INFO:causalml: Gini (Treatment): 0.9860
{'X': W4 W2 W1 W3 W0 X1 X0 \
525 -1.257118 0.330664 -0.915888 0.671743 0.367080 -0.748137 0.450687
240 -1.118451 0.973362 0.110315 1.164763 -0.021371 -0.742111 -0.164940
35 -0.435681 -0.794540 -0.418219 -0.689760 0.350847 -1.512905 -0.001673
466 0.020113 1.393934 -0.355963 1.711858 -0.590929 0.222977 1.567094
243 -2.996842 -0.425847 0.431792 1.635614 -1.242695 -0.323142 1.143186
.. ... ... ... ... ... ... ...
795 -1.103395 1.605360 -1.577250 -0.179236 0.174861 0.283471 -0.625883
979 -1.343553 -0.429367 -0.073222 1.017619 0.843141 -0.743642 0.564612
446 0.592343 0.313503 -0.041499 1.056622 0.324638 0.685480 -2.317766
663 0.921055 0.125452 0.450490 -0.032753 -0.320248 0.770046 0.389654
245 -1.757050 1.779740 -0.756241 -0.346250 -1.023875 -0.470867 0.000910
X0 X1
525 0.450687 -0.748137
240 -0.164940 -0.742111
35 -0.001673 -1.512905
466 1.567094 0.222977
243 1.143186 -0.323142
.. ... ...
795 -0.625883 0.283471
979 0.564612 -0.743642
446 -2.317766 0.685480
663 0.389654 0.770046
245 0.000910 -0.470867
[1000 rows x 9 columns], 'y': 525 9.406466
240 6.512254
35 -2.892738
466 18.638368
243 -10.483545
...
795 5.028396
979 10.393456
446 6.907692
663 15.384533
245 2.675580
Name: y, Length: 1000, dtype: float64, 'treatment': 525 True
240 True
35 False
466 True
243 False
...
795 True
979 True
446 True
663 True
245 True
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
206 0.103730 -1.222034 -0.933344 0.063977 1.399857 0.000319 2.151908
560 -0.462661 -0.232212 -1.504443 -1.182863 -1.370777 0.188339 1.665963
533 -1.862196 2.125772 -0.836537 0.032782 -2.380123 -1.400905 -1.115644
528 -1.197186 2.033324 -0.122422 0.389914 -1.670525 0.477707 0.919813
463 -1.450262 1.052490 -1.091478 0.585210 1.013792 0.704843 0.793687
.. ... ... ... ... ... ... ...
769 -1.792941 0.756132 -0.350476 -0.365354 -0.166349 0.270195 1.808962
280 -0.952118 -0.646225 -1.024826 -0.408950 -0.476089 -1.776295 0.934463
689 -2.206252 1.297100 -1.432744 -2.462582 -1.985402 -2.328632 -0.045690
723 0.089334 1.225408 0.816162 0.782219 -0.602493 -0.468571 0.482690
696 1.374044 1.843108 -0.542039 -0.043563 1.022823 -1.429075 1.809225
X0 X1
206 2.151908 0.000319
560 1.665963 0.188339
533 -1.115644 -1.400905
528 0.919813 0.477707
463 0.793687 0.704843
.. ... ...
769 1.808962 0.270195
280 0.934463 -1.776295
689 -0.045690 -2.328632
723 0.482690 -0.468571
696 1.809225 -1.429075
[1000 rows x 9 columns], 'y': 206 20.680223
560 -7.215301
533 -6.739186
528 8.156158
463 13.719677
...
769 -5.821681
280 5.994137
689 -13.994008
723 12.592456
696 23.158781
Name: y, Length: 1000, dtype: float64, 'treatment': 206 True
560 False
533 True
528 True
463 True
...
769 False
280 True
689 False
723 True
696 True
Name: v0, Length: 1000, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0897
INFO:causalml: RMSE (Treatment): 0.9911
INFO:causalml: sMAPE (Control): 0.5511
INFO:causalml: sMAPE (Treatment): 0.1703
INFO:causalml: Gini (Control): 0.7123
INFO:causalml: Gini (Treatment): 0.9874
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0492
{'X': W4 W2 W1 W3 W0 X1 X0 \
952 -0.660953 0.410799 -1.691342 -0.427253 0.002600 -1.478529 1.918048
877 -0.329610 1.058964 -0.095169 -1.850964 1.588369 1.510118 -0.178392
895 -0.539152 -0.067219 -0.942383 0.206152 0.166660 0.376239 0.972146
114 -0.246959 0.668501 -1.134474 0.249492 -1.934428 -1.135913 -0.308327
457 -1.390795 1.570080 -0.639978 1.787026 -2.865565 -1.465397 -0.257055
.. ... ... ... ... ... ... ...
308 -1.176133 0.314924 0.418085 0.637007 0.911918 -0.742568 0.841509
349 -1.713807 0.945541 -0.100213 0.359346 0.039680 -0.455719 1.268811
764 -1.799079 2.439488 -0.823690 -0.679766 -0.140499 0.202744 1.818416
873 -0.273349 -0.544929 0.632921 0.675695 -0.970007 -1.999815 0.067102
991 -0.262942 0.695928 0.109928 -1.248148 -2.639630 -0.009511 1.550811
X0 X1
952 1.918048 -1.478529
877 -0.178392 1.510118
895 0.972146 0.376239
114 -0.308327 -1.135913
457 -0.257055 -1.465397
.. ... ...
308 0.841509 -0.742568
349 1.268811 -0.455719
764 1.818416 0.202744
873 0.067102 -1.999815
991 1.550811 -0.009511
[1000 rows x 9 columns], 'y': 952 -2.868485
877 12.698322
895 12.243751
114 0.119504
457 -8.028104
...
308 12.604981
349 10.315484
764 11.907958
873 4.499265
991 -7.648859
Name: y, Length: 1000, dtype: float64, 'treatment': 952 False
877 True
895 True
114 True
457 False
...
308 True
349 True
764 True
873 True
991 False
Name: v0, Length: 1000, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
889 -0.164693 -0.098146 0.862596 0.255460 -0.216842 -1.656429 0.520855
883 -1.149449 -0.077862 -0.130952 -0.114547 -1.504078 1.082394 0.597279
495 -0.887332 0.992530 0.348676 0.724410 -0.731744 1.080723 -0.451440
831 -1.405624 -0.589721 -0.969126 0.575371 -2.125845 -1.547868 1.996688
987 -0.779654 1.379589 -0.474635 -0.208440 -0.895621 -0.919435 0.467998
.. ... ... ... ... ... ... ...
931 -0.593921 0.967747 -0.087519 -0.318961 -0.374575 -1.136714 0.905738
930 0.300960 0.603222 -0.368445 -0.424044 0.242424 1.053366 -0.593627
992 -0.972164 0.159489 -2.098758 0.192947 -0.229343 0.044889 -0.560626
817 0.615579 1.267909 -0.445512 -0.048259 0.461022 -0.247928 1.070838
647 -0.053906 1.500408 -0.769493 1.074275 -0.442873 1.186568 -0.897844
X0 X1
889 0.520855 -1.656429
883 0.597279 1.082394
495 -0.451440 1.080723
831 1.996688 -1.547868
987 0.467998 -0.919435
.. ... ...
931 0.905738 -1.136714
930 -0.593627 1.053366
992 -0.560626 0.044889
817 1.070838 -0.247928
647 -0.897844 1.186568
[1000 rows x 9 columns], 'y': 889 9.124434
883 5.901248
495 7.428448
831 4.497600
987 -4.527449
...
931 10.080089
930 10.114187
992 3.553867
817 17.203287
647 9.825764
Name: y, Length: 1000, dtype: float64, 'treatment': 889 True
883 True
495 True
831 True
987 False
...
931 True
930 True
992 True
817 True
647 True
Name: v0, Length: 1000, dtype: bool}
INFO:causalml: RMSE (Treatment): 1.0259
INFO:causalml: sMAPE (Control): 0.4768
INFO:causalml: sMAPE (Treatment): 0.1909
INFO:causalml: Gini (Control): 0.6954
INFO:causalml: Gini (Treatment): 0.9849
INFO:dowhy.causal_refuters.bootstrap_refuter:Making use of Bootstrap as we have more than 100 examples.
Note: The greater the number of examples, the more accurate are the confidence estimates
INFO:dowhy.causal_refuters.data_subset_refuter:Refutation over 0.8 simulated datasets of size 800.0 each
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1266
INFO:causalml: RMSE (Treatment): 0.7583
INFO:causalml: sMAPE (Control): 0.5441
INFO:causalml: sMAPE (Treatment): 0.1523
INFO:causalml: Gini (Control): 0.7189
INFO:causalml: Gini (Treatment): 0.9944
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0595
INFO:causalml: RMSE (Treatment): 0.7478
INFO:causalml: sMAPE (Control): 0.5545
INFO:causalml: sMAPE (Treatment): 0.1526
INFO:causalml: Gini (Control): 0.7471
INFO:causalml: Gini (Treatment): 0.9948
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
{'X': W4 W2 W1 W3 W0 X1 X0 \
526 1.675724 0.943376 0.067126 0.549606 0.792403 -0.578182 0.606835
938 -1.315956 1.949162 -0.981438 -0.657011 1.021762 -1.702059 0.071287
252 -0.407608 -0.441935 -1.985984 1.444090 0.083796 -0.670731 0.259822
711 0.099864 0.069601 -0.148899 0.008564 -0.642494 -0.050277 0.035692
946 -0.056748 1.082737 0.733627 1.643594 -0.787399 -1.668734 1.968422
.. ... ... ... ... ... ... ...
17 -2.362098 0.982769 0.900772 0.481628 -0.168328 -1.676616 2.100352
789 -1.419550 -0.199775 1.439845 -0.043468 -0.070078 0.347234 1.237806
970 -1.394364 1.786996 1.473136 -0.626023 -0.659760 -1.513833 -0.140064
340 0.375616 2.217136 -0.666164 -0.970808 0.446217 -0.864206 1.763119
150 -2.720297 0.875790 -0.364609 -0.201468 0.001957 -1.103898 0.006235
X0 X1
526 0.606835 -0.578182
938 0.071287 -1.702059
252 0.259822 -0.670731
711 0.035692 -0.050277
946 1.968422 -1.668734
.. ... ...
17 2.100352 -1.676616
789 1.237806 0.347234
970 -0.140064 -1.513833
340 1.763119 -0.864206
150 0.006235 -1.103898
[800 rows x 9 columns], 'y': 526 20.291162
938 7.827260
252 -0.786820
711 8.687897
946 16.526801
...
17 10.402576
789 11.103887
970 3.837965
340 18.529106
150 1.212438
Name: y, Length: 800, dtype: float64, 'treatment': 526 True
938 True
252 False
711 True
946 True
...
17 True
789 True
970 True
340 True
150 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
10 0.846619 2.980613 0.205696 2.969570 0.858587 -1.222764 1.147817
753 -3.041559 0.539260 0.080762 -0.522629 -2.000581 -1.113098 0.679077
832 -0.682884 1.926730 -0.161279 -0.512041 -0.170792 -1.586715 0.243828
332 -1.250673 0.380127 -0.875099 1.332656 0.562342 0.345025 1.790799
396 -0.251196 -1.935299 -1.143646 -1.311957 -1.503472 0.517977 0.501330
.. ... ... ... ... ... ... ...
837 -1.599117 0.022039 1.215839 0.749469 -1.528362 -1.775356 1.715229
568 0.513430 0.522040 0.017360 -0.306262 -0.660055 -1.021097 1.297397
925 -0.292250 -0.487899 -1.791678 1.743438 -1.451384 -1.451548 -0.034151
594 -0.485088 0.198923 0.215890 1.387663 0.491391 -1.501354 -0.527038
270 -0.167769 0.239291 -0.121369 0.249183 -0.697704 -0.932864 -0.077138
X0 X1
10 1.147817 -1.222764
753 0.679077 -1.113098
832 0.243828 -1.586715
332 1.790799 0.345025
396 0.501330 0.517977
.. ... ...
837 1.715229 -1.775356
568 1.297397 -1.021097
925 -0.034151 -1.451548
594 -0.527038 -1.501354
270 -0.077138 -0.932864
[800 rows x 9 columns], 'y': 10 24.500212
753 -3.081806
832 7.911675
332 16.296656
396 -9.105144
...
837 6.998667
568 13.469854
925 4.053751
594 8.167200
270 6.749300
Name: y, Length: 800, dtype: float64, 'treatment': 10 True
753 True
832 True
332 True
396 False
...
837 True
568 True
925 True
594 True
270 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0612
INFO:causalml: RMSE (Treatment): 0.6918
INFO:causalml: sMAPE (Control): 0.5598
INFO:causalml: sMAPE (Treatment): 0.1391
INFO:causalml: Gini (Control): 0.7077
INFO:causalml: Gini (Treatment): 0.9946
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
{'X': W4 W2 W1 W3 W0 X1 X0 \
52 0.100104 1.279976 1.033007 1.442204 -1.120492 0.116882 -0.350810
258 -1.776837 0.805692 -1.001388 0.520858 0.798608 -1.470144 0.534863
631 0.271998 2.338601 -1.112341 1.567964 -0.208038 -0.964256 0.333245
970 -1.394364 1.786996 1.473136 -0.626023 -0.659760 -1.513833 -0.140064
499 -1.577195 -0.178122 0.207028 1.204303 -0.666172 1.145283 0.458618
.. ... ... ... ... ... ... ...
730 -0.464492 1.914988 0.441570 2.087402 0.778967 -0.037934 1.464653
538 -1.000985 2.417859 0.027563 1.436945 1.891137 -2.054885 0.763508
845 -1.215958 -0.485289 -1.167214 0.914403 -1.773236 0.103620 -0.518889
979 -1.320009 -0.547319 0.058828 1.048133 1.078373 -0.857583 0.480911
956 -0.371871 -2.250709 0.444837 1.333937 -1.775519 -1.056909 0.569966
X0 X1
52 -0.350810 0.116882
258 0.534863 -1.470144
631 0.333245 -0.964256
970 -0.140064 -1.513833
499 0.458618 1.145283
.. ... ...
730 1.464653 -0.037934
538 0.763508 -2.054885
845 -0.518889 0.103620
979 0.480911 -0.857583
956 0.569966 -1.056909
[800 rows x 9 columns], 'y': 52 9.973921
258 8.016723
631 14.220450
970 3.837965
499 8.058945
...
730 20.892188
538 16.761939
845 -8.309502
979 10.393456
956 4.438298
Name: y, Length: 800, dtype: float64, 'treatment': 52 True
258 True
631 True
970 True
499 True
...
730 True
538 True
845 False
979 True
956 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
139 -1.494898 1.076908 0.509008 -0.008836 0.810677 -0.868950 0.996169
425 -0.547299 1.010457 0.355019 0.509403 -0.299352 -1.751637 1.623652
512 -1.320082 1.599199 1.561314 2.979497 -1.486751 -1.162078 0.346264
491 0.047326 0.391397 -0.404472 0.060057 0.642744 -0.800913 -0.652640
441 0.096609 1.592914 -1.201277 -1.185385 -0.135004 0.210872 2.310466
.. ... ... ... ... ... ... ...
866 -2.492060 0.007731 -0.940262 -0.496057 1.104068 0.043952 0.520345
838 -0.753922 -0.045816 -0.873461 1.047785 -0.824178 -1.028226 -0.543500
942 -1.242170 1.302580 -0.669569 -0.436052 -0.873213 -1.051785 0.880964
741 -0.491645 2.790552 -1.320505 -0.920479 -1.283653 -0.399134 -0.088422
504 -1.822921 2.092858 0.863527 -0.530852 -1.148241 -0.820791 0.423434
X0 X1
139 0.996169 -0.868950
425 1.623652 -1.751637
512 0.346264 -1.162078
491 -0.652640 -0.800913
441 2.310466 0.210872
.. ... ...
866 0.520345 0.043952
838 -0.543500 -1.028226
942 0.880964 -1.051785
741 -0.088422 -0.399134
504 0.423434 -0.820791
[800 rows x 9 columns], 'y': 139 11.778033
425 13.323890
512 8.367137
491 8.770425
441 18.248395
...
866 6.414822
838 3.145267
942 6.530430
741 5.593102
504 4.307409
Name: y, Length: 800, dtype: float64, 'treatment': 139 True
425 True
512 True
491 True
441 True
...
866 True
838 True
942 True
741 True
504 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: RMSE (Control): 3.0428
INFO:causalml: RMSE (Treatment): 0.7573
INFO:causalml: sMAPE (Control): 0.5377
INFO:causalml: sMAPE (Treatment): 0.1472
INFO:causalml: Gini (Control): 0.7402
INFO:causalml: Gini (Treatment): 0.9938
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0320
INFO:causalml: RMSE (Treatment): 0.7062
INFO:causalml: sMAPE (Control): 0.5521
INFO:causalml: sMAPE (Treatment): 0.1479
INFO:causalml: Gini (Control): 0.7289
INFO:causalml: Gini (Treatment): 0.9946
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0591
INFO:causalml: RMSE (Treatment): 0.7414
INFO:causalml: sMAPE (Control): 0.5376
INFO:causalml: sMAPE (Treatment): 0.1489
{'X': W4 W2 W1 W3 W0 X1 X0 \
556 -1.361029 0.354536 -0.575247 -1.264914 -0.170182 -2.098308 -0.219006
591 -1.762898 1.105254 1.394248 0.278984 -0.431230 -0.144092 -0.668399
603 0.768344 1.258159 -0.927093 0.093637 0.910444 -0.339078 1.272218
65 -2.860295 0.491337 0.307032 0.402665 0.265118 -1.899636 -0.565288
275 -2.120068 -0.318202 0.171676 1.909965 -0.392065 -1.480635 -1.148364
.. ... ... ... ... ... ... ...
238 -0.166010 0.774921 -0.462897 -0.294769 -1.389314 -0.210174 2.431329
377 -2.792060 1.482096 -1.502509 -0.178419 -1.393264 -0.224015 -0.587890
327 -1.263486 1.105278 -1.375127 0.828352 -2.622254 -1.555671 0.808030
721 0.285260 -0.083247 -2.164773 0.446914 -0.582682 -1.433214 0.854157
585 0.931665 0.595916 -0.103318 0.428966 0.099797 0.546834 0.794030
X0 X1
556 -0.219006 -2.098308
591 -0.668399 -0.144092
603 1.272218 -0.339078
65 -0.565288 -1.899636
275 -1.148364 -1.480635
.. ... ...
238 2.431329 -0.210174
377 -0.587890 -0.224015
327 0.808030 -1.555671
721 0.854157 -1.433214
585 0.794030 0.546834
[800 rows x 9 columns], 'y': 556 0.746452
591 3.407731
603 19.861939
65 -0.860515
275 -1.163599
...
238 14.670040
377 -3.680926
327 1.918859
721 9.936280
585 17.683899
Name: y, Length: 800, dtype: float64, 'treatment': 556 True
591 True
603 True
65 True
275 True
...
238 True
377 True
327 True
721 True
585 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
927 -0.585546 0.718989 -1.390052 1.452628 -1.072161 0.379900 1.646249
501 -1.563067 0.827427 1.267829 -0.259303 -1.929615 -0.584444 0.461660
25 -0.690786 1.699003 -0.408257 0.040733 -2.094357 -0.544787 1.407147
50 -0.250699 -0.035041 -0.605283 0.316777 -1.389142 1.439943 0.671531
858 -2.847642 1.463499 1.836013 -0.281452 -0.828618 -0.584263 -0.020862
.. ... ... ... ... ... ... ...
505 -2.479285 0.847818 0.513598 -0.218587 0.793758 -1.587561 1.340198
478 -1.186330 1.319188 -0.988151 0.448109 0.338470 -1.917601 1.262970
67 -0.786445 0.153501 -0.155530 1.019364 -0.536998 -2.323703 -1.580963
773 -1.096836 -0.432951 -0.837524 -0.231672 -0.535628 -1.020083 -0.353180
971 -1.011609 0.842579 -1.257641 1.094270 0.446977 1.836771 1.109406
X0 X1
927 1.646249 0.379900
501 0.461660 -0.584444
25 1.407147 -0.544787
50 0.671531 1.439943
858 -0.020862 -0.584263
.. ... ...
505 1.340198 -1.587561
478 1.262970 -1.917601
67 -1.580963 -2.323703
773 -0.353180 -1.020083
971 1.109406 1.836771
[800 rows x 9 columns], 'y': 927 -2.729883
501 2.593155
25 8.623876
50 9.813211
858 0.976517
...
505 8.711479
478 11.134846
67 -0.972001
773 1.630931
971 16.046613
Name: y, Length: 800, dtype: float64, 'treatment': 927 False
501 True
25 True
50 True
858 True
...
505 True
478 True
67 True
773 True
971 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: Gini (Control): 0.7470
INFO:causalml: Gini (Treatment): 0.9945
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0006
INFO:causalml: RMSE (Treatment): 0.6701
INFO:causalml: sMAPE (Control): 0.5528
INFO:causalml: sMAPE (Treatment): 0.1413
INFO:causalml: Gini (Control): 0.7535
INFO:causalml: Gini (Treatment): 0.9958
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9126
INFO:causalml: RMSE (Treatment): 0.7190
INFO:causalml: sMAPE (Control): 0.5292
INFO:causalml: sMAPE (Treatment): 0.1424
INFO:causalml: Gini (Control): 0.7453
INFO:causalml: Gini (Treatment): 0.9944
{'X': W4 W2 W1 W3 W0 X1 X0 \
189 0.449357 0.147778 1.294543 -0.691706 -3.244261 -0.423599 0.935502
280 -0.924446 -0.495998 -1.067446 -0.475160 -0.560881 -1.593906 1.057462
516 -0.316795 2.424823 0.020510 -0.536910 0.983380 -0.880608 1.127091
343 -1.245795 1.748387 0.828184 -1.775403 -0.972468 -0.866709 0.489782
554 -1.733641 -1.598375 1.607236 0.161280 -1.096390 -2.406156 -0.029761
.. ... ... ... ... ... ... ...
588 -0.930255 -0.378142 0.632255 0.279449 -1.818598 -1.226886 0.208515
517 -1.392397 0.066449 -0.113032 1.352150 -0.975298 -0.875759 1.033629
544 -1.005914 0.255475 -1.627301 1.838873 0.013614 -1.474838 1.050279
622 -0.848690 -0.845794 0.267025 -0.137135 0.356153 -0.001756 0.376872
808 -0.291951 1.043771 -0.571882 -0.537580 0.895934 -1.203433 1.200730
X0 X1
189 0.935502 -0.423599
280 1.057462 -1.593906
516 1.127091 -0.880608
343 0.489782 -0.866709
554 -0.029761 -2.406156
.. ... ...
588 0.208515 -1.226886
517 1.033629 -0.875759
544 1.050279 -1.474838
622 0.376872 -0.001756
808 1.200730 -1.203433
[800 rows x 9 columns], 'y': 189 5.702358
280 5.994137
516 16.717229
343 4.731928
554 -8.661899
...
588 -7.223205
517 -4.981074
544 10.741956
622 8.845133
808 14.588358
Name: y, Length: 800, dtype: float64, 'treatment': 189 True
280 True
516 True
343 True
554 False
...
588 False
517 False
544 True
622 True
808 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
639 -2.186421 -0.027222 -0.566212 0.233679 -0.689588 0.053065 1.482137
95 -0.058838 4.762058 0.823520 0.244461 -0.340888 -2.698332 -0.572900
310 -1.369793 1.308092 0.005217 0.374738 -0.826930 -1.722449 -1.553554
852 -3.069755 1.000289 -1.401000 0.920461 0.886048 -1.676077 0.615709
82 -1.435084 0.702458 -0.750261 1.113334 -0.917545 -0.649801 -1.010522
.. ... ... ... ... ... ... ...
413 -0.344967 1.226283 -2.856753 -0.996308 -3.040920 -0.789789 0.101225
620 -0.173878 -0.822082 0.608737 -0.477850 -0.325762 -0.578554 1.573905
337 -2.268327 0.960651 -1.943224 -0.899046 -0.893776 -0.366596 -0.470081
916 -2.328647 0.329460 -0.298049 0.392304 0.526570 0.266795 -0.277838
741 -0.491645 2.790552 -1.320505 -0.920479 -1.283653 -0.399134 -0.088422
X0 X1
639 1.482137 0.053065
95 -0.572900 -2.698332
310 -1.553554 -1.722449
852 0.615709 -1.676077
82 -1.010522 -0.649801
.. ... ...
413 0.101225 -0.789789
620 1.573905 -0.578554
337 -0.470081 -0.366596
916 -0.277838 0.266795
741 -0.088422 -0.399134
[800 rows x 9 columns], 'y': 639 7.178158
95 9.600613
310 -2.023777
852 4.981610
82 0.633027
...
413 -10.466301
620 12.522042
337 -10.149884
916 4.529654
741 5.593102
Name: y, Length: 800, dtype: float64, 'treatment': 639 True
95 True
310 True
852 True
82 True
...
413 False
620 True
337 False
916 True
741 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9552
INFO:causalml: RMSE (Treatment): 0.6090
INFO:causalml: sMAPE (Control): 0.5162
INFO:causalml: sMAPE (Treatment): 0.1294
INFO:causalml: Gini (Control): 0.7544
INFO:causalml: Gini (Treatment): 0.9965
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1323
INFO:causalml: RMSE (Treatment): 0.7235
INFO:causalml: sMAPE (Control): 0.5527
INFO:causalml: sMAPE (Treatment): 0.1525
INFO:causalml: Gini (Control): 0.7191
INFO:causalml: Gini (Treatment): 0.9951
{'X': W4 W2 W1 W3 W0 X1 X0 \
410 -0.703120 0.450567 -0.504908 0.896033 -1.220663 -3.269095 -1.609582
85 -1.598213 1.517630 -0.586852 -0.114137 -0.935007 -2.850025 -0.268890
207 -1.340535 1.069060 1.086892 0.379268 1.663276 -2.166838 0.824418
286 -0.767221 1.168926 0.081677 0.486259 -1.291802 0.482044 0.276275
895 -0.459769 -0.017087 -0.860174 0.294297 0.061199 0.406711 0.845962
.. ... ... ... ... ... ... ...
705 0.261741 3.188563 -2.010226 -0.517940 1.029141 0.040541 0.750995
529 0.614057 -0.173724 0.014769 -0.498167 -2.710425 -1.591953 0.364769
385 0.098676 -0.311522 -0.271842 0.307693 -1.909032 -1.327209 -1.324019
957 -0.096493 2.758566 -0.130268 0.723499 -1.958197 0.441628 -0.668551
434 -1.319228 1.447448 0.649329 -0.209742 -0.678209 -2.074434 -0.466893
X0 X1
410 -1.609582 -3.269095
85 -0.268890 -2.850025
207 0.824418 -2.166838
286 0.276275 0.482044
895 0.845962 0.406711
.. ... ...
705 0.750995 0.040541
529 0.364769 -1.591953
385 -1.324019 -1.327209
957 -0.668551 0.441628
434 -0.466893 -2.074434
[800 rows x 9 columns], 'y': 410 -3.800252
85 -0.384362
207 13.068250
286 7.882269
895 12.243751
...
705 18.039614
529 3.288937
385 -1.265529
957 6.531621
434 1.849930
Name: y, Length: 800, dtype: float64, 'treatment': 410 True
85 True
207 True
286 True
895 True
...
705 True
529 True
385 True
957 True
434 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
406 -1.787177 0.601264 -0.241539 -0.288932 0.204519 1.070860 0.778961
98 -0.724707 -0.167508 -2.200046 1.316365 -0.652669 1.877820 0.372580
118 -1.274995 1.158275 0.289024 -0.612569 -0.654518 0.424480 0.256109
581 -0.357955 2.656209 -1.192847 -0.701790 -1.368029 -1.040599 1.376946
792 -0.720148 0.309347 -0.138121 -1.657897 -0.246685 -0.155534 1.208282
.. ... ... ... ... ... ... ...
913 -1.875782 0.226743 -0.219598 2.054710 0.145892 -0.134735 0.897215
141 -0.778642 1.177801 -1.433150 0.422531 1.560049 -1.618745 1.400487
892 -1.218494 0.819447 -0.725373 -0.563789 -1.077169 -0.844040 -0.904803
749 -0.836545 0.213895 1.151435 1.882737 -0.742327 -1.583142 1.220717
32 -0.949214 0.797576 0.148739 -0.683603 -1.245559 0.625313 0.634566
X0 X1
406 0.778961 1.070860
98 0.372580 1.877820
118 0.256109 0.424480
581 1.376946 -1.040599
792 1.208282 -0.155534
.. ... ...
913 0.897215 -0.134735
141 1.400487 -1.618745
892 -0.904803 -0.844040
749 1.220717 -1.583142
32 0.634566 0.625313
[800 rows x 9 columns], 'y': 406 9.585905
98 -3.658929
118 6.682644
581 10.512753
792 9.683267
...
913 10.638397
141 15.976815
892 -0.915984
749 11.307324
32 -5.941016
Name: y, Length: 800, dtype: float64, 'treatment': 406 True
98 False
118 True
581 True
792 True
...
913 True
141 True
892 True
749 True
32 False
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0749
INFO:causalml: RMSE (Treatment): 0.7530
INFO:causalml: sMAPE (Control): 0.5563
INFO:causalml: sMAPE (Treatment): 0.1509
INFO:causalml: Gini (Control): 0.7384
INFO:causalml: Gini (Treatment): 0.9941
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0160
INFO:causalml: RMSE (Treatment): 0.7073
INFO:causalml: sMAPE (Control): 0.5457
INFO:causalml: sMAPE (Treatment): 0.1420
INFO:causalml: Gini (Control): 0.7585
INFO:causalml: Gini (Treatment): 0.9950
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
{'X': W4 W2 W1 W3 W0 X1 X0 \
909 -0.448326 1.299826 0.401639 -0.500486 -1.006631 -0.906303 1.442992
349 -1.755474 1.024933 -0.194372 0.339537 0.120379 -0.514354 1.189622
814 0.459184 2.326171 -0.114560 0.137966 -0.677452 -1.446683 -0.415932
808 -0.291951 1.043771 -0.571882 -0.537580 0.895934 -1.203433 1.200730
316 -0.460513 0.381744 -1.155697 -0.412682 0.696926 -0.399444 0.467115
.. ... ... ... ... ... ... ...
175 -1.154340 0.806588 -0.662689 0.887440 0.111731 -1.009443 2.862545
586 -1.822525 1.328268 -0.580694 0.434084 -1.937340 0.184012 3.008666
339 -0.174635 1.102320 -0.538718 1.353400 -2.411045 -0.088519 -0.223676
885 -2.040345 -0.486322 -1.615560 0.418978 -1.620201 0.405398 0.986656
775 -2.360643 1.573135 -1.344099 0.823569 -1.137799 -0.227823 0.357754
X0 X1
909 1.442992 -0.906303
349 1.189622 -0.514354
814 -0.415932 -1.446683
808 1.200730 -1.203433
316 0.467115 -0.399444
.. ... ...
175 2.862545 -1.009443
586 3.008666 0.184012
339 -0.223676 -0.088519
885 0.986656 0.405398
775 0.357754 -0.227823
[800 rows x 9 columns], 'y': 909 11.235374
349 10.315484
814 8.970856
808 14.588358
316 10.974035
...
175 17.721185
586 -8.767996
339 4.815990
885 -11.199742
775 -7.934090
Name: y, Length: 800, dtype: float64, 'treatment': 909 True
349 True
814 True
808 True
316 True
...
175 True
586 False
339 True
885 False
775 False
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
680 -2.086015 0.221983 0.305686 -0.239145 0.557483 -2.016304 -0.558481
479 -2.501195 0.440413 -0.336028 -0.086759 -2.148200 0.364346 -0.500635
127 -1.184442 1.633850 -0.489806 0.806896 -0.654125 -0.324203 -1.297638
696 1.393340 1.758799 -0.511376 -0.081397 0.909083 -1.352712 1.852517
391 -0.307159 1.106719 1.338069 -1.242240 0.718523 0.202760 0.500101
.. ... ... ... ... ... ... ...
85 -1.598213 1.517630 -0.586852 -0.114137 -0.935007 -2.850025 -0.268890
944 -1.357226 1.319787 0.307083 -0.175397 0.241389 -2.086970 0.097158
677 -0.926078 0.166307 -2.183101 1.988610 -0.286812 -1.952046 0.131363
71 -0.217006 0.453172 -1.028966 1.065666 0.093415 0.336570 1.457445
877 -0.359565 0.826991 -0.179359 -1.811258 1.418593 1.405163 -0.075609
X0 X1
680 -0.558481 -2.016304
479 -0.500635 0.364346
127 -1.297638 -0.324203
696 1.852517 -1.352712
391 0.500101 0.202760
.. ... ...
85 -0.268890 -2.850025
944 0.097158 -2.086970
677 0.131363 -1.952046
71 1.457445 0.336570
877 -0.075609 1.405163
[800 rows x 9 columns], 'y': 680 -4.551836
479 -4.199785
127 2.218793
696 23.158781
391 13.502571
...
85 -0.384362
944 5.893961
677 6.044637
71 16.548460
877 12.698322
Name: y, Length: 800, dtype: float64, 'treatment': 680 False
479 True
127 True
696 True
391 True
...
85 True
944 True
677 True
71 True
877 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0539
INFO:causalml: RMSE (Treatment): 0.7237
INFO:causalml: sMAPE (Control): 0.5291
INFO:causalml: sMAPE (Treatment): 0.1414
INFO:causalml: Gini (Control): 0.7237
INFO:causalml: Gini (Treatment): 0.9946
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0446
INFO:causalml: RMSE (Treatment): 0.7516
INFO:causalml: sMAPE (Control): 0.5363
INFO:causalml: sMAPE (Treatment): 0.1535
INFO:causalml: Gini (Control): 0.7290
{'X': W4 W2 W1 W3 W0 X1 X0 \
703 -0.880997 -1.820627 0.171736 -0.167854 0.599802 -2.011412 -0.082251
839 -0.294596 0.983148 -0.666509 0.796590 0.072181 -0.815520 0.188710
893 -1.491824 0.452183 -1.205184 0.340149 1.739224 -0.632809 0.210046
187 0.166212 1.756207 0.174379 0.739862 -0.309621 0.009743 -0.960418
578 -0.125015 -0.484719 -0.554158 -0.644919 -0.352951 -0.169403 0.807828
.. ... ... ... ... ... ... ...
230 -1.551489 1.387095 -0.588754 0.241508 -1.112741 -0.355862 0.419304
541 0.055686 -0.430488 -0.206977 -1.310188 -0.050773 -0.528455 -0.335622
222 -1.038459 1.255839 0.229480 -2.465858 -0.747697 -0.352680 1.793597
352 -0.314322 -0.439802 2.366604 0.701073 -0.609823 0.603549 -0.256803
8 -1.192098 0.543069 0.448059 1.496816 1.148883 -0.101334 0.352319
X0 X1
703 -0.082251 -2.011412
839 0.188710 -0.815520
893 0.210046 -0.632809
187 -0.960418 0.009743
578 0.807828 -0.169403
.. ... ...
230 0.419304 -0.355862
541 -0.335622 -0.528455
222 1.793597 -0.352680
352 -0.256803 0.603549
8 0.352319 -0.101334
[800 rows x 9 columns], 'y': 703 -3.147667
839 10.718157
893 10.444157
187 9.138120
578 -2.946371
...
230 5.106041
541 5.970889
222 9.575547
352 8.970110
8 13.374297
Name: y, Length: 800, dtype: float64, 'treatment': 703 False
839 True
893 True
187 True
578 False
...
230 True
541 True
222 True
352 True
8 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
444 -0.480592 0.778385 -2.187205 0.209081 -0.399762 -1.417665 0.987812
436 -0.829198 -0.708516 -0.845920 0.281235 0.360107 -0.575813 0.086546
873 -0.180674 -0.491029 0.704617 0.672175 -1.146367 -2.164384 -0.005079
880 -1.838863 1.807867 2.274113 -0.514016 0.766872 -0.627074 0.533003
336 -3.093855 1.469971 0.367279 1.174817 -0.729766 -2.114001 0.885400
.. ... ... ... ... ... ... ...
377 -2.792060 1.482096 -1.502509 -0.178419 -1.393264 -0.224015 -0.587890
625 -1.336550 0.261883 0.557248 -0.069210 1.161863 -0.761143 1.075224
810 -0.497451 0.532572 0.048320 0.565230 -0.286114 -0.078723 -0.839620
403 -1.630763 2.405041 0.712370 0.529186 -2.230960 -0.416914 -1.593093
229 -1.660012 1.065827 0.301958 1.601869 0.377531 0.371159 3.128694
X0 X1
444 0.987812 -1.417665
436 0.086546 -0.575813
873 -0.005079 -2.164384
880 0.533003 -0.627074
336 0.885400 -2.114001
.. ... ...
377 -0.587890 -0.224015
625 1.075224 -0.761143
810 -0.839620 -0.078723
403 -1.593093 -0.416914
229 3.128694 0.371159
[800 rows x 9 columns], 'y': 444 9.305666
436 -2.400060
873 4.499265
880 10.445032
336 2.926169
...
377 -3.680926
625 12.619755
810 5.956647
403 -3.265557
229 21.267379
Name: y, Length: 800, dtype: float64, 'treatment': 444 True
436 False
873 True
880 True
336 True
...
377 True
625 True
810 True
403 True
229 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: Gini (Treatment): 0.9940
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0310
INFO:causalml: RMSE (Treatment): 0.6508
INFO:causalml: sMAPE (Control): 0.5466
INFO:causalml: sMAPE (Treatment): 0.1352
INFO:causalml: Gini (Control): 0.7524
INFO:causalml: Gini (Treatment): 0.9958
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0423
INFO:causalml: RMSE (Treatment): 0.6303
INFO:causalml: sMAPE (Control): 0.5129
{'X': W4 W2 W1 W3 W0 X1 X0 \
749 -0.836545 0.213895 1.151435 1.882737 -0.742327 -1.583142 1.220717
972 0.023127 0.650561 -0.921566 1.750151 1.136720 -1.237667 -0.986899
268 -0.008387 -0.345640 0.297517 0.932659 -0.233741 -0.957095 -1.559348
456 -1.180741 1.678642 0.789419 1.087730 0.037308 0.563234 0.500563
444 -0.480592 0.778385 -2.187205 0.209081 -0.399762 -1.417665 0.987812
.. ... ... ... ... ... ... ...
798 0.298268 1.287738 -0.339625 0.484676 -1.361646 -0.844488 0.584065
119 -0.412019 -1.707939 0.133539 0.898397 -0.839980 -0.812084 1.197569
891 -0.294883 -0.574886 -1.010901 1.587116 0.836384 0.457966 2.071495
649 -2.154564 1.280369 -0.834181 1.662134 -0.490512 0.051132 1.668837
928 0.109927 -0.944171 -0.797629 0.166504 -0.799982 0.651497 -1.165977
X0 X1
749 1.220717 -1.583142
972 -0.986899 -1.237667
268 -1.559348 -0.957095
456 0.500563 0.563234
444 0.987812 -1.417665
.. ... ...
798 0.584065 -0.844488
119 1.197569 -0.812084
891 2.071495 0.457966
649 1.668837 0.051132
928 -1.165977 0.651497
[800 rows x 9 columns], 'y': 749 11.307324
972 10.333966
268 3.465358
456 12.752919
444 9.305666
...
798 10.206839
119 9.223485
891 20.166272
649 11.515556
928 3.466874
Name: y, Length: 800, dtype: float64, 'treatment': 749 True
972 True
268 True
456 True
444 True
...
798 True
119 True
891 True
649 True
928 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
267 -0.878236 2.441374 0.562945 0.761842 -1.538557 -0.622399 0.837778
261 -1.476037 1.628997 -0.398342 1.161776 0.247181 0.421408 -0.968428
816 -0.262987 0.921280 -0.389069 -0.883456 -2.158824 -1.767588 -0.312548
973 0.403785 0.820598 -1.545243 1.044494 1.061604 -1.578398 -1.347821
172 -1.078399 1.722034 -1.675423 -0.026819 -0.577141 -1.633102 1.619526
.. ... ... ... ... ... ... ...
581 -0.357955 2.656209 -1.192847 -0.701790 -1.368029 -1.040599 1.376946
947 -1.534655 -0.090160 -0.309462 -0.872775 -0.925303 -0.554704 1.455779
349 -1.755474 1.024933 -0.194372 0.339537 0.120379 -0.514354 1.189622
791 -0.302223 -0.035221 -0.779010 -1.067815 -1.088018 1.298864 1.837893
457 -1.376599 1.461089 -0.718660 1.781923 -2.802867 -1.477809 0.128276
X0 X1
267 0.837778 -0.622399
261 -0.968428 0.421408
816 -0.312548 -1.767588
973 -1.347821 -1.578398
172 1.619526 -1.633102
.. ... ...
581 1.376946 -1.040599
947 1.455779 -0.554704
349 1.189622 -0.514354
791 1.837893 1.298864
457 0.128276 -1.477809
[800 rows x 9 columns], 'y': 267 9.609806
261 6.314564
816 -0.020121
973 8.500263
172 10.160763
...
581 10.512753
947 6.326875
349 10.315484
791 12.700214
457 -8.028104
Name: y, Length: 800, dtype: float64, 'treatment': 267 True
261 True
816 True
973 True
172 True
...
581 True
947 True
349 True
791 True
457 False
Name: v0, Length: 800, dtype: bool}
INFO:causalml: sMAPE (Treatment): 0.1280
INFO:causalml: Gini (Control): 0.7234
INFO:causalml: Gini (Treatment): 0.9959
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9207
INFO:causalml: RMSE (Treatment): 0.7112
INFO:causalml: sMAPE (Control): 0.5407
INFO:causalml: sMAPE (Treatment): 0.1472
INFO:causalml: Gini (Control): 0.7708
INFO:causalml: Gini (Treatment): 0.9953
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0262
INFO:causalml: RMSE (Treatment): 0.6868
INFO:causalml: sMAPE (Control): 0.5434
INFO:causalml: sMAPE (Treatment): 0.1467
{'X': W4 W2 W1 W3 W0 X1 X0 \
418 -1.575082 -0.671851 -0.031660 -0.315301 0.096593 0.101204 -0.833223
113 0.062439 3.227941 -0.979419 0.293534 -0.847729 0.604221 -0.504114
60 0.305279 -0.220252 -0.191311 1.984745 -1.325471 0.975962 -1.100874
135 -1.650996 2.260611 -1.131024 1.404627 -3.453988 0.098573 0.729032
301 -0.802656 -0.970350 0.487567 0.756892 -0.372002 -0.915336 1.021589
.. ... ... ... ... ... ... ...
835 0.331235 0.078864 -0.421835 -0.926551 1.775880 0.278762 1.594422
8 -1.192098 0.543069 0.448059 1.496816 1.148883 -0.101334 0.352319
37 -0.057527 1.104099 -1.337860 0.103293 1.118403 -1.084497 0.679618
49 -0.982952 2.225363 -1.526931 -0.694241 0.029243 -0.455032 0.234971
939 -0.909925 1.045910 0.159272 -0.074724 -0.073039 -1.209146 2.115223
X0 X1
418 -0.833223 0.101204
113 -0.504114 0.604221
60 -1.100874 0.975962
135 0.729032 0.098573
301 1.021589 -0.915336
.. ... ...
835 1.594422 0.278762
8 0.352319 -0.101334
37 0.679618 -1.084497
49 0.234971 -0.455032
939 2.115223 -1.209146
[800 rows x 9 columns], 'y': 418 -5.534462
113 10.245959
60 6.681242
135 2.418843
301 9.391349
...
835 20.490073
8 13.374297
37 14.525794
49 8.274390
939 14.519592
Name: y, Length: 800, dtype: float64, 'treatment': 418 False
113 True
60 True
135 True
301 True
...
835 True
8 True
37 True
49 True
939 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
463 -1.384868 1.213614 -1.227984 0.542554 0.851906 1.016157 0.823336
425 -0.547299 1.010457 0.355019 0.509403 -0.299352 -1.751637 1.623652
615 -1.312910 0.549883 -0.743413 1.273369 -2.435562 -1.071918 2.090585
842 0.197790 0.605362 -0.437344 -0.573307 0.107948 -1.436057 0.995390
762 0.100350 0.689221 -0.950142 0.477153 -0.908423 0.109756 2.284619
.. ... ... ... ... ... ... ...
252 -0.407608 -0.441935 -1.985984 1.444090 0.083796 -0.670731 0.259822
844 -0.961302 1.353622 0.111644 1.015867 -2.161583 0.255054 0.858101
935 -1.612218 0.425603 0.450798 1.795192 -1.030650 0.071948 0.533019
884 -0.166472 2.470375 -0.515409 0.360396 -1.543268 -1.070048 0.645882
596 -1.135855 0.142313 0.627392 0.540314 0.120423 -1.359658 2.273243
X0 X1
463 0.823336 1.016157
425 1.623652 -1.751637
615 2.090585 -1.071918
842 0.995390 -1.436057
762 2.284619 0.109756
.. ... ...
252 0.259822 -0.670731
844 0.858101 0.255054
935 0.533019 0.071948
884 0.645882 -1.070048
596 2.273243 -1.359658
[800 rows x 9 columns], 'y': 463 13.719677
425 13.323890
615 -8.516564
842 12.471850
762 17.175897
...
252 -0.786820
844 -5.710027
935 7.518694
884 9.392570
596 14.773593
Name: y, Length: 800, dtype: float64, 'treatment': 463 True
425 True
615 False
842 True
762 True
...
252 False
844 False
935 True
884 True
596 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: Gini (Control): 0.7588
INFO:causalml: Gini (Treatment): 0.9957
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1346
INFO:causalml: RMSE (Treatment): 0.7431
INFO:causalml: sMAPE (Control): 0.5441
INFO:causalml: sMAPE (Treatment): 0.1588
INFO:causalml: Gini (Control): 0.7470
INFO:causalml: Gini (Treatment): 0.9950
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
575 -1.620041 1.491617 -0.062211 2.124632 -1.193065 -0.186873 -1.131729
619 -0.665633 0.888952 -1.242832 -1.692269 0.683929 -0.545882 -0.557084
323 -1.225390 1.130518 -1.096882 -0.350487 -0.604044 0.001088 0.390490
616 -1.830382 0.390144 1.344299 0.522921 -0.493492 -0.066279 -0.126978
730 -0.464492 1.914988 0.441570 2.087402 0.778967 -0.037934 1.464653
.. ... ... ... ... ... ... ...
538 -1.000985 2.417859 0.027563 1.436945 1.891137 -2.054885 0.763508
56 -0.181805 0.846647 -1.250481 -0.053526 -0.601944 -0.032988 0.712948
135 -1.650996 2.260611 -1.131024 1.404627 -3.453988 0.098573 0.729032
272 -3.198219 0.554460 0.179309 2.032221 -0.401181 -1.528464 1.415503
372 -0.187672 1.029903 -0.511397 0.030915 0.302991 0.331046 2.442863
X0 X1
575 -1.131729 -0.186873
619 -0.557084 -0.545882
323 0.390490 0.001088
616 -0.126978 -0.066279
730 1.464653 -0.037934
.. ... ...
538 0.763508 -2.054885
56 0.712948 -0.032988
135 0.729032 0.098573
272 1.415503 -1.528464
372 2.442863 0.331046
[800 rows x 9 columns], 'y': 575 1.988673
619 5.375176
323 6.435152
616 4.604313
730 20.892188
...
538 16.761939
56 -1.924324
135 2.418843
272 -7.247960
372 20.420704
Name: y, Length: 800, dtype: float64, 'treatment': 575 True
619 True
323 True
616 True
730 True
...
538 True
56 False
135 True
272 False
372 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0101
INFO:causalml: RMSE (Treatment): 0.7229
INFO:causalml: sMAPE (Control): 0.5357
INFO:causalml: sMAPE (Treatment): 0.1439
INFO:causalml: Gini (Control): 0.7439
INFO:causalml: Gini (Treatment): 0.9947
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0507
INFO:causalml: RMSE (Treatment): 0.7382
INFO:causalml: sMAPE (Control): 0.5534
INFO:causalml: sMAPE (Treatment): 0.1506
INFO:causalml: Gini (Control): 0.7552
INFO:causalml: Gini (Treatment): 0.9949
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
{'X': W4 W2 W1 W3 W0 X1 X0 \
198 0.659512 0.897440 0.294459 0.913949 0.778009 0.324835 -0.038025
134 -2.667587 1.546152 0.275451 1.924880 -1.241239 -1.069396 2.735936
705 0.261741 3.188563 -2.010226 -0.517940 1.029141 0.040541 0.750995
787 0.106762 2.948496 -1.895033 -1.510659 -0.813685 -0.585402 -0.112157
582 -1.856578 1.519025 -0.354817 1.777607 -0.103456 -0.540906 0.894554
.. ... ... ... ... ... ... ...
540 -1.436398 1.926302 -0.447886 -0.040584 2.181020 0.720121 1.462581
720 -0.178107 0.545358 -1.188979 -2.009287 -1.712708 0.183073 2.293672
729 -0.356672 0.996783 0.112431 0.185130 -0.025222 -0.843250 -0.270536
623 -0.801864 -1.215830 -2.351636 1.814226 0.088183 -0.416848 1.256143
500 -0.721612 -0.768412 0.628073 1.455824 1.152325 -0.160033 1.609167
X0 X1
198 -0.038025 0.324835
134 2.735936 -1.069396
705 0.750995 0.040541
787 -0.112157 -0.585402
582 0.894554 -0.540906
.. ... ...
540 1.462581 0.720121
720 2.293672 0.183073
729 -0.270536 -0.843250
623 1.256143 -0.416848
500 1.609167 -0.160033
[800 rows x 9 columns], 'y': 198 16.522842
134 11.781552
705 18.039614
787 7.397373
582 10.549091
...
540 19.517995
720 11.018665
729 8.272864
623 11.515329
500 17.859054
Name: y, Length: 800, dtype: float64, 'treatment': 198 True
134 True
705 True
787 True
582 True
...
540 True
720 True
729 True
623 True
500 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
359 -1.250892 0.608337 -1.159236 1.196291 -2.448155 -1.418204 2.171817
900 -1.528877 0.854363 -0.020892 -0.125090 1.283825 0.408115 -0.168281
710 -0.753746 2.934628 -1.147550 -0.196935 -0.921997 -0.625230 -0.292340
551 -0.703300 0.665407 1.347444 -0.209059 -0.416380 -0.482778 -0.699907
877 -0.359565 0.826991 -0.179359 -1.811258 1.418593 1.405163 -0.075609
.. ... ... ... ... ... ... ...
330 -1.641813 -0.968627 -0.550355 0.137721 0.993861 -3.243495 -0.204848
41 0.075080 -0.116355 -0.810933 2.222729 -0.150383 0.082462 -0.018712
772 -1.631390 0.465915 -1.149010 1.590925 -0.376748 -1.413846 -0.295266
29 -1.026446 0.591365 0.862837 0.817784 -0.689067 -0.759426 -0.807769
967 -1.386450 1.648145 -0.953457 1.161783 -0.494481 -3.161705 1.259562
X0 X1
359 2.171817 -1.418204
900 -0.168281 0.408115
710 -0.292340 -0.625230
551 -0.699907 -0.482778
877 -0.075609 1.405163
.. ... ...
330 -0.204848 -3.243495
41 -0.018712 0.082462
772 -0.295266 -1.413846
29 -0.807769 -0.759426
967 1.259562 -3.161705
[800 rows x 9 columns], 'y': 359 7.556557
900 9.560536
710 5.904376
551 4.944574
877 12.698322
...
330 -3.426282
41 12.011428
772 3.250030
29 3.429318
967 -2.657495
Name: y, Length: 800, dtype: float64, 'treatment': 359 True
900 True
710 True
551 True
877 True
...
330 False
41 True
772 True
29 True
967 False
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
819 -0.213838 0.707596 -1.514565 -0.247908 -0.337350 0.286133 2.415622
951 -3.474533 0.798959 -1.342694 -0.344446 0.399229 -0.460764 1.828910
138 0.549141 0.618552 -0.411559 1.549844 -1.097545 0.417703 -0.088796
815 -1.745923 1.862168 -1.038948 0.258170 -1.036942 -0.586505 -0.189691
689 -2.243570 1.275778 -1.424485 -2.440678 -1.906424 -2.373430 -0.198568
.. ... ... ... ... ... ... ...
404 0.269959 -1.426995 -0.624877 1.207414 -0.632554 0.826927 -0.342909
28 0.355363 -1.712344 -0.541527 -1.500008 -0.178104 -0.523930 -0.313656
54 1.459268 1.943608 1.129690 0.548664 -1.340973 -0.812905 -0.963531
392 0.391364 -0.989100 -0.665144 -0.463719 1.025926 0.692766 -0.147856
830 -0.930911 -0.544095 0.223413 2.002798 -0.116908 -1.217341 0.878953
X0 X1
819 2.415622 0.286133
951 1.828910 -0.460764
138 -0.088796 0.417703
815 -0.189691 -0.586505
689 -0.198568 -2.373430
.. ... ...
404 -0.342909 0.826927
28 -0.313656 -0.523930
54 -0.963531 -0.812905
392 -0.147856 0.692766
830 0.878953 -1.217341
[800 rows x 9 columns], 'y': 819 17.249427
951 -9.429193
138 11.274922
815 2.533898
689 -13.994008
...
404 -1.323791
28 4.753158
54 9.737109
392 12.111471
830 -1.062782
Name: y, Length: 800, dtype: float64, 'treatment': 819 True
951 False
138 True
815 True
689 False
...
404 False
28 True
54 True
392 True
830 False
Name: v0, Length: 800, dtype: bool}
INFO:causalml: RMSE (Control): 3.0887
INFO:causalml: RMSE (Treatment): 0.7302
INFO:causalml: sMAPE (Control): 0.5598
INFO:causalml: sMAPE (Treatment): 0.1484
INFO:causalml: Gini (Control): 0.7513
INFO:causalml: Gini (Treatment): 0.9947
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0181
INFO:causalml: RMSE (Treatment): 0.7458
INFO:causalml: sMAPE (Control): 0.5518
INFO:causalml: sMAPE (Treatment): 0.1555
INFO:causalml: Gini (Control): 0.7430
INFO:causalml: Gini (Treatment): 0.9943
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0144
INFO:causalml: RMSE (Treatment): 0.6481
INFO:causalml: sMAPE (Control): 0.5533
INFO:causalml: sMAPE (Treatment): 0.1329
INFO:causalml: Gini (Control): 0.7747
{'X': W4 W2 W1 W3 W0 X1 X0 \
843 -1.819689 2.321605 1.205835 1.378205 -0.687589 -1.421073 -0.008063
171 -1.142720 1.363980 -1.309646 -0.806699 -1.397706 0.591713 -0.245067
554 -1.733641 -1.598375 1.607236 0.161280 -1.096390 -2.406156 -0.029761
343 -1.245795 1.748387 0.828184 -1.775403 -0.972468 -0.866709 0.489782
19 -0.472917 -0.200341 -0.794933 2.274586 -1.165631 -1.449257 0.217406
.. ... ... ... ... ... ... ...
823 0.865119 0.256833 -0.057368 0.192438 0.700995 -1.560342 1.492618
456 -1.180741 1.678642 0.789419 1.087730 0.037308 0.563234 0.500563
913 -1.875782 0.226743 -0.219598 2.054710 0.145892 -0.134735 0.897215
74 -0.996694 0.160173 -2.637286 -2.023282 1.303478 -1.990375 1.207325
424 -1.778586 -0.041397 0.547042 -0.146728 -0.207960 0.620439 1.840962
X0 X1
843 -0.008063 -1.421073
171 -0.245067 0.591713
554 -0.029761 -2.406156
343 0.489782 -0.866709
19 0.217406 -1.449257
.. ... ...
823 1.492618 -1.560342
456 0.500563 0.563234
913 0.897215 -0.134735
74 1.207325 -1.990375
424 1.840962 0.620439
[800 rows x 9 columns], 'y': 843 6.032900
171 2.573635
554 -8.661899
343 4.731928
19 6.700542
...
823 18.415087
456 12.752919
913 10.638397
74 8.688916
424 -5.690040
Name: y, Length: 800, dtype: float64, 'treatment': 843 True
171 True
554 False
343 True
19 True
...
823 True
456 True
913 True
74 True
424 False
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
943 -2.252890 0.804815 -1.189588 0.399429 -1.924218 -1.450234 0.482038
348 -0.822689 1.950660 -1.773724 0.367062 -1.388543 -1.489743 1.572649
940 1.618120 -0.305935 -1.002070 0.408436 -0.407028 -1.124055 0.103301
406 -1.787177 0.601264 -0.241539 -0.288932 0.204519 1.070860 0.778961
739 -1.946497 0.850165 -0.030473 0.710454 0.237677 -0.545032 -0.878717
.. ... ... ... ... ... ... ...
453 -1.249839 -0.644978 -0.359153 1.084902 -0.516596 -0.365041 -0.139304
583 -0.820218 -0.945137 -1.568877 -0.082810 0.614237 -0.346996 0.919443
963 -1.400546 1.656134 -0.736065 1.479252 -1.067357 -1.225327 0.845018
625 -1.336550 0.261883 0.557248 -0.069210 1.161863 -0.761143 1.075224
375 -1.851590 -0.485257 -0.505663 -0.368564 -1.023961 -1.380998 1.320727
X0 X1
943 0.482038 -1.450234
348 1.572649 -1.489743
940 0.103301 -1.124055
406 0.778961 1.070860
739 -0.878717 -0.545032
.. ... ...
453 -0.139304 -0.365041
583 0.919443 -0.346996
963 0.845018 -1.225327
625 1.075224 -0.761143
375 1.320727 -1.380998
[800 rows x 9 columns], 'y': 943 -10.951371
348 9.469476
940 12.297833
406 9.585905
739 -3.295801
...
453 4.442757
583 -2.819370
963 7.905661
625 12.619755
375 3.740574
Name: y, Length: 800, dtype: float64, 'treatment': 943 False
348 True
940 True
406 True
739 False
...
453 True
583 False
963 True
625 True
375 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: Gini (Treatment): 0.9962
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0228
INFO:causalml: RMSE (Treatment): 0.6860
INFO:causalml: sMAPE (Control): 0.5510
INFO:causalml: sMAPE (Treatment): 0.1466
INFO:causalml: Gini (Control): 0.7470
INFO:causalml: Gini (Treatment): 0.9953
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9469
INFO:causalml: RMSE (Treatment): 0.7414
INFO:causalml: sMAPE (Control): 0.5231
{'X': W4 W2 W1 W3 W0 X1 X0 \
364 -1.078590 1.563574 1.504080 -0.486241 -1.540033 -0.435152 0.956055
932 -1.213129 0.643221 -0.007752 0.320722 -1.204954 0.065085 -0.764774
634 -0.085908 0.582399 -1.871995 -0.128561 1.399274 -2.013647 -0.399001
840 0.863115 0.884267 0.385888 1.081802 -0.236509 -0.114485 0.397843
671 -1.805567 1.966280 0.355705 0.675031 -1.531579 -0.217720 -0.701737
.. ... ... ... ... ... ... ...
616 -1.830382 0.390144 1.344299 0.522921 -0.493492 -0.066279 -0.126978
850 -1.559250 1.506724 0.449602 0.956745 -1.983230 -0.410145 2.749812
144 -0.199659 1.050489 1.034230 1.426123 0.412507 0.336879 2.230533
558 -0.550544 0.440434 -0.750181 1.612420 0.551244 0.168593 1.698572
843 -1.819689 2.321605 1.205835 1.378205 -0.687589 -1.421073 -0.008063
X0 X1
364 0.956055 -0.435152
932 -0.764774 0.065085
634 -0.399001 -2.013647
840 0.397843 -0.114485
671 -0.701737 -0.217720
.. ... ...
616 -0.126978 -0.066279
850 2.749812 -0.410145
144 2.230533 0.336879
558 1.698572 0.168593
843 -0.008063 -1.421073
[800 rows x 9 columns], 'y': 364 7.693260
932 1.654133
634 8.990907
840 15.748095
671 -6.150284
...
616 4.604313
850 12.795708
144 22.522110
558 18.249687
843 6.032900
Name: y, Length: 800, dtype: float64, 'treatment': 364 True
932 True
634 True
840 True
671 False
...
616 True
850 True
144 True
558 True
843 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
368 -2.298170 1.146523 -1.218792 -0.454870 -0.475421 -1.530454 0.327366
156 -1.847964 1.488048 -0.079643 0.746560 -1.203496 -0.411978 0.865581
728 0.021921 2.347870 1.993858 -2.023822 -0.508237 -0.879659 0.131258
822 -0.308029 1.239229 -1.712106 2.618474 -0.731033 -0.360836 1.878272
503 -2.066140 2.033010 -1.559405 0.352297 0.418520 -0.333911 1.084480
.. ... ... ... ... ... ... ...
805 -2.622025 -0.308385 -0.881486 -0.183280 0.289018 -2.986494 0.245462
25 -0.690786 1.699003 -0.408257 0.040733 -2.094357 -0.544787 1.407147
402 -2.267259 2.356874 -0.312747 -0.267666 -0.938556 0.873383 1.145311
643 -0.837543 2.690282 -0.956587 1.519004 -3.148478 1.188059 1.128666
962 -0.058529 0.632542 -0.738886 -0.663994 -0.868324 -2.555294 -0.708468
X0 X1
368 0.327366 -1.530454
156 0.865581 -0.411978
728 0.131258 -0.879659
822 1.878272 -0.360836
503 1.084480 -0.333911
.. ... ...
805 0.245462 -2.986494
25 1.407147 -0.544787
402 1.145311 0.873383
643 1.128666 1.188059
962 -0.708468 -2.555294
[800 rows x 9 columns], 'y': 368 1.367327
156 6.574194
728 9.374205
822 17.217532
503 -3.163402
...
805 -0.721618
25 8.623876
402 8.213659
643 9.118838
962 1.353868
Name: y, Length: 800, dtype: float64, 'treatment': 368 True
156 True
728 True
822 True
503 False
...
805 True
25 True
402 True
643 True
962 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: sMAPE (Treatment): 0.1503
INFO:causalml: Gini (Control): 0.7236
INFO:causalml: Gini (Treatment): 0.9936
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0841
INFO:causalml: RMSE (Treatment): 0.7612
INFO:causalml: sMAPE (Control): 0.5448
INFO:causalml: sMAPE (Treatment): 0.1577
INFO:causalml: Gini (Control): 0.7382
INFO:causalml: Gini (Treatment): 0.9938
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1236
INFO:causalml: RMSE (Treatment): 0.7095
INFO:causalml: sMAPE (Control): 0.5382
INFO:causalml: sMAPE (Treatment): 0.1403
INFO:causalml: Gini (Control): 0.7091
INFO:causalml: Gini (Treatment): 0.9948
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
{'X': W4 W2 W1 W3 W0 X1 X0 \
647 0.107638 1.405276 -0.825606 1.040288 -0.390118 1.171509 -0.898491
656 -1.273620 1.797036 2.092367 0.953316 1.197489 -0.625639 0.731893
704 -2.163862 1.694504 -1.310167 0.084654 -0.510292 -1.743878 -0.389615
691 -0.985721 1.895540 0.176961 1.219720 -1.233766 -2.238988 1.283650
665 -2.174730 0.248624 -0.092817 -0.715735 0.210519 -0.742166 -0.077510
.. ... ... ... ... ... ... ...
187 0.166212 1.756207 0.174379 0.739862 -0.309621 0.009743 -0.960418
139 -1.494898 1.076908 0.509008 -0.008836 0.810677 -0.868950 0.996169
86 -1.171030 0.999708 -0.474575 -0.002353 1.214732 -0.432952 -1.419492
981 -1.677948 -1.622248 -1.171652 0.349836 -2.213015 1.101661 0.722546
435 -1.214834 1.792454 -0.114462 0.368086 -0.765766 0.747054 1.689047
X0 X1
647 -0.898491 1.171509
656 0.731893 -0.625639
704 -0.389615 -1.743878
691 1.283650 -2.238988
665 -0.077510 -0.742166
.. ... ...
187 -0.960418 0.009743
139 0.996169 -0.868950
86 -1.419492 -0.432952
981 0.722546 1.101661
435 1.689047 0.747054
[800 rows x 9 columns], 'y': 647 9.825764
656 15.632059
704 0.037896
691 9.514980
665 2.331887
...
187 9.138120
139 11.778033
86 4.893758
981 -12.765797
435 13.857254
Name: y, Length: 800, dtype: float64, 'treatment': 647 True
656 True
704 True
691 True
665 True
...
187 True
139 True
86 True
981 False
435 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
914 -0.033438 1.223195 0.288715 -0.542490 -0.948134 0.723902 1.010993
658 -0.901419 0.202237 -2.133776 0.712530 -0.236428 -0.743572 0.753088
366 -1.403735 1.313386 1.988391 -0.578266 1.442075 1.501325 0.150474
775 -2.360643 1.573135 -1.344099 0.823569 -1.137799 -0.227823 0.357754
519 -0.928551 1.643629 -0.012840 -0.089474 -1.289071 -0.902553 0.551816
.. ... ... ... ... ... ... ...
216 -1.185130 1.723057 -2.436984 -0.947938 -0.797647 -1.237892 0.020300
121 1.534365 1.840154 -0.218035 -0.257249 -0.734629 -0.767329 -1.295119
495 -0.937219 0.875867 0.303746 0.659802 -0.598222 1.107266 -0.420269
619 -0.665633 0.888952 -1.242832 -1.692269 0.683929 -0.545882 -0.557084
942 -1.242170 1.302580 -0.669569 -0.436052 -0.873213 -1.051785 0.880964
X0 X1
914 1.010993 0.723902
658 0.753088 -0.743572
366 0.150474 1.501325
775 0.357754 -0.227823
519 0.551816 -0.902553
.. ... ...
216 0.020300 -1.237892
121 -1.295119 -0.767329
495 -0.420269 1.107266
619 -0.557084 -0.545882
942 0.880964 -1.051785
[800 rows x 9 columns], 'y': 914 12.801840
658 8.483868
366 13.879918
775 -7.934090
519 6.513308
...
216 2.376140
121 8.541463
495 7.428448
619 5.375176
942 6.530430
Name: y, Length: 800, dtype: float64, 'treatment': 914 True
658 True
366 True
775 False
519 True
...
216 True
121 True
495 True
619 True
942 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
641 -2.239311 2.194117 -0.353902 0.360330 0.632691 -1.221853 -0.388297
470 -0.119189 2.038863 -0.185731 -0.858254 -2.226518 -0.985301 -1.027339
507 -1.568032 -0.180577 -1.663979 0.966254 -1.411487 -2.027152 0.819706
826 -1.770524 1.148010 -0.657719 0.002402 -0.619052 -2.314279 0.680449
464 -1.458938 1.066085 -0.038658 -0.458790 0.563506 0.649619 0.007999
.. ... ... ... ... ... ... ...
754 -1.008916 0.089333 -0.381037 1.182553 0.653293 -0.475920 0.036262
305 -2.363560 1.924215 1.711203 -1.273183 -0.441145 -0.403834 1.202634
855 -1.525195 2.679573 0.256933 -0.844142 -0.237770 -0.840204 0.824960
248 -0.322096 0.956739 -1.722687 0.445099 1.192956 -0.951015 -0.322611
649 -2.154564 1.280369 -0.834181 1.662134 -0.490512 0.051132 1.668837
X0 X1
641 -0.388297 -1.221853
470 -1.027339 -0.985301
507 0.819706 -2.027152
826 0.680449 -2.314279
464 0.007999 0.649619
.. ... ...
754 0.036262 -0.475920
305 1.202634 -0.403834
855 0.824960 -0.840204
248 -0.322611 -0.951015
649 1.668837 0.051132
[800 rows x 9 columns], 'y': 641 4.862547
470 -0.021734
507 -8.258449
826 3.753175
464 8.601975
...
754 9.673575
305 7.299002
855 8.939223
248 10.511960
649 11.515556
Name: y, Length: 800, dtype: float64, 'treatment': 641 True
470 True
507 False
826 True
464 True
...
754 True
305 True
855 True
248 True
649 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: RMSE (Control): 3.0128
INFO:causalml: RMSE (Treatment): 0.7183
INFO:causalml: sMAPE (Control): 0.5521
INFO:causalml: sMAPE (Treatment): 0.1389
INFO:causalml: Gini (Control): 0.7298
INFO:causalml: Gini (Treatment): 0.9944
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1668
INFO:causalml: RMSE (Treatment): 0.7702
INFO:causalml: sMAPE (Control): 0.5480
INFO:causalml: sMAPE (Treatment): 0.1526
INFO:causalml: Gini (Control): 0.7192
INFO:causalml: Gini (Treatment): 0.9944
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9965
INFO:causalml: RMSE (Treatment): 0.7273
INFO:causalml: sMAPE (Control): 0.5443
INFO:causalml: sMAPE (Treatment): 0.1442
INFO:causalml: Gini (Control): 0.7526
INFO:causalml: Gini (Treatment): 0.9950
{'X': W4 W2 W1 W3 W0 X1 X0 \
897 -0.501089 -1.031997 -1.334448 -0.012652 -0.451207 -0.315850 -0.369898
172 -1.078399 1.722034 -1.675423 -0.026819 -0.577141 -1.633102 1.619526
20 -0.810576 1.360309 -0.656243 1.132048 -0.926051 0.651433 1.648609
323 -1.225390 1.130518 -1.096882 -0.350487 -0.604044 0.001088 0.390490
900 -1.528877 0.854363 -0.020892 -0.125090 1.283825 0.408115 -0.168281
.. ... ... ... ... ... ... ...
779 -1.245329 0.830018 0.144683 0.171689 0.322303 -0.800108 -0.118539
556 -1.361029 0.354536 -0.575247 -1.264914 -0.170182 -2.098308 -0.219006
461 -1.364660 -1.842826 0.241333 0.373454 -0.367738 0.860921 0.880397
958 -0.495343 0.847053 -0.028871 -0.718100 -0.871586 -0.630299 -0.132512
49 -0.982952 2.225363 -1.526931 -0.694241 0.029243 -0.455032 0.234971
X0 X1
897 -0.369898 -0.315850
172 1.619526 -1.633102
20 1.648609 0.651433
323 0.390490 0.001088
900 -0.168281 0.408115
.. ... ...
779 -0.118539 -0.800108
556 -0.219006 -2.098308
461 0.880397 0.860921
958 -0.132512 -0.630299
49 0.234971 -0.455032
[800 rows x 9 columns], 'y': 897 -4.566144
172 10.160763
20 14.509975
323 6.435152
900 9.560536
...
779 7.001850
556 0.746452
461 -6.434741
958 5.051010
49 8.274390
Name: y, Length: 800, dtype: float64, 'treatment': 897 False
172 True
20 True
323 True
900 True
...
779 True
556 True
461 False
958 True
49 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
979 -1.320009 -0.547319 0.058828 1.048133 1.078373 -0.857583 0.480911
786 1.321150 2.395540 -1.313403 1.003881 -1.291792 -0.548760 -1.106383
809 -1.846180 1.505397 0.539237 1.200542 -1.354442 -0.559294 0.909066
941 -0.858300 2.689664 0.060630 -0.800292 -0.649474 -0.542851 0.680252
342 -1.702353 -0.506216 -1.938204 -0.079481 -0.042667 -1.379694 0.242173
.. ... ... ... ... ... ... ...
371 -2.437457 1.813953 -0.635430 -0.294641 -0.408002 0.338137 0.274353
299 -1.370319 0.104371 -0.773003 1.741095 0.119556 -1.227923 -0.272634
234 0.299190 -0.331887 -1.279492 1.419962 -1.114102 -1.432604 0.304340
953 -2.210788 0.834261 -1.790993 0.421272 -1.301499 -0.508087 -0.600657
365 -0.079718 -0.263842 0.747338 0.929554 0.426811 -1.590757 1.366447
X0 X1
979 0.480911 -0.857583
786 -1.106383 -0.548760
809 0.909066 -0.559294
941 0.680252 -0.542851
342 0.242173 -1.379694
.. ... ...
371 0.274353 0.338137
299 -0.272634 -1.227923
234 0.304340 -1.432604
953 -0.600657 -0.508087
365 1.366447 -1.590757
[800 rows x 9 columns], 'y': 979 10.393456
786 8.954078
809 7.084273
941 9.630585
342 -6.856146
...
371 4.468847
299 5.614664
234 7.980017
953 -9.484729
365 15.195618
Name: y, Length: 800, dtype: float64, 'treatment': 979 True
786 True
809 True
941 True
342 False
...
371 True
299 True
234 True
953 False
365 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1210
INFO:causalml: RMSE (Treatment): 0.6654
INFO:causalml: sMAPE (Control): 0.5705
INFO:causalml: sMAPE (Treatment): 0.1382
INFO:causalml: Gini (Control): 0.7480
INFO:causalml: Gini (Treatment): 0.9959
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0215
INFO:causalml: RMSE (Treatment): 0.6435
INFO:causalml: sMAPE (Control): 0.5569
INFO:causalml: sMAPE (Treatment): 0.1369
INFO:causalml: Gini (Control): 0.7462
INFO:causalml: Gini (Treatment): 0.9960
{'X': W4 W2 W1 W3 W0 X1 X0 \
158 -0.957173 1.371619 -0.480406 1.601165 -1.831360 -1.142136 2.213026
970 -1.394364 1.786996 1.473136 -0.626023 -0.659760 -1.513833 -0.140064
299 -1.370319 0.104371 -0.773003 1.741095 0.119556 -1.227923 -0.272634
338 0.024125 2.398870 -0.344341 0.049499 -0.135206 -1.931463 1.292749
490 -2.391954 2.550940 -0.776817 0.245312 0.292239 1.475404 1.305845
.. ... ... ... ... ... ... ...
875 -2.411078 0.159398 0.119580 0.748787 -0.457547 0.313736 -0.560625
940 1.618120 -0.305935 -1.002070 0.408436 -0.407028 -1.124055 0.103301
38 -0.603358 0.428043 -1.045056 -0.064250 -1.028287 -0.614795 2.905953
528 -1.220354 1.951022 -0.143826 0.399718 -1.725250 0.579914 0.826622
126 -0.113592 2.137890 0.587189 -0.608982 -0.434552 -1.535190 0.152988
X0 X1
158 2.213026 -1.142136
970 -0.140064 -1.513833
299 -0.272634 -1.227923
338 1.292749 -1.931463
490 1.305845 1.475404
.. ... ...
875 -0.560625 0.313736
940 0.103301 -1.124055
38 2.905953 -0.614795
528 0.826622 0.579914
126 0.152988 -1.535190
[800 rows x 9 columns], 'y': 158 12.243766
970 3.837965
299 5.614664
338 14.613827
490 -3.562790
...
875 1.205333
940 12.297833
38 15.173396
528 8.156158
126 9.175909
Name: y, Length: 800, dtype: float64, 'treatment': 158 True
970 True
299 True
338 True
490 False
...
875 True
940 True
38 True
528 True
126 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
981 -1.677948 -1.622248 -1.171652 0.349836 -2.213015 1.101661 0.722546
610 -0.711808 1.595194 0.094204 0.005941 -1.302585 -0.669101 1.030998
356 -1.087973 1.063452 -0.582690 -0.391019 -0.717769 0.567377 0.968256
829 -1.396963 -0.080609 -2.047189 -0.910429 -1.164537 -1.251936 -0.347075
756 0.646687 0.512998 -0.425760 0.363156 -1.685429 -1.135889 1.931878
.. ... ... ... ... ... ... ...
454 -0.487418 0.412049 -0.859189 0.620612 -1.830073 -0.234510 2.177056
489 -0.365082 -1.451807 -0.737839 0.617674 0.183613 -0.899562 -1.117287
917 -2.304123 1.615978 1.217869 0.195346 -0.128304 -2.287419 1.444336
371 -2.437457 1.813953 -0.635430 -0.294641 -0.408002 0.338137 0.274353
936 -0.482737 -0.826928 -0.542605 -0.831002 -1.069918 -2.562988 1.258835
X0 X1
981 0.722546 1.101661
610 1.030998 -0.669101
356 0.968256 0.567377
829 -0.347075 -1.251936
756 1.931878 -1.135889
.. ... ...
454 2.177056 -0.234510
489 -1.117287 -0.899562
917 1.444336 -2.287419
371 0.274353 0.338137
936 1.258835 -2.562988
[800 rows x 9 columns], 'y': 981 -12.765797
610 9.248446
356 -4.713297
829 -9.531238
756 13.898148
...
454 12.121477
489 2.992182
917 -4.386132
371 4.468847
936 4.998172
Name: y, Length: 800, dtype: float64, 'treatment': 981 False
610 True
356 False
829 False
756 True
...
454 True
489 True
917 False
371 True
936 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0191
INFO:causalml: RMSE (Treatment): 0.7000
INFO:causalml: sMAPE (Control): 0.5560
INFO:causalml: sMAPE (Treatment): 0.1486
INFO:causalml: Gini (Control): 0.7625
INFO:causalml: Gini (Treatment): 0.9959
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0636
INFO:causalml: RMSE (Treatment): 0.7485
{'X': W4 W2 W1 W3 W0 X1 X0 \
860 -0.100403 1.765904 -1.580557 -0.337570 0.115587 -0.811085 -0.628878
897 -0.501089 -1.031997 -1.334448 -0.012652 -0.451207 -0.315850 -0.369898
758 -0.238995 0.258464 -0.815419 0.855917 -0.016059 -1.265210 1.154044
0 -1.124599 0.284335 -0.838580 1.223258 -0.089772 -0.633368 -1.372310
521 -1.235550 2.140683 -2.152255 0.310299 -1.837627 -0.705293 -0.465131
.. ... ... ... ... ... ... ...
818 -2.294772 1.081263 -0.110948 0.240523 -2.452061 -0.676310 1.024324
822 -0.308029 1.239229 -1.712106 2.618474 -0.731033 -0.360836 1.878272
540 -1.436398 1.926302 -0.447886 -0.040584 2.181020 0.720121 1.462581
383 -1.820459 0.011031 -1.003686 -0.301110 0.254573 -1.724935 0.863482
708 -0.500479 1.096561 0.068238 -0.285794 -0.225941 -1.796636 1.564528
X0 X1
860 -0.628878 -0.811085
897 -0.369898 -0.315850
758 1.154044 -1.265210
0 -1.372310 -0.633368
521 -0.465131 -0.705293
.. ... ...
818 1.024324 -0.676310
822 1.878272 -0.360836
540 1.462581 0.720121
383 0.863482 -1.724935
708 1.564528 -1.796636
[800 rows x 9 columns], 'y': 860 7.407446
897 -4.566144
758 12.802985
0 2.034000
521 0.541061
...
818 -11.770683
822 17.217532
540 19.517995
383 5.450868
708 12.369009
Name: y, Length: 800, dtype: float64, 'treatment': 860 True
897 False
758 True
0 True
521 True
...
818 False
822 True
540 True
383 True
708 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
504 -1.822921 2.092858 0.863527 -0.530852 -1.148241 -0.820791 0.423434
634 -0.085908 0.582399 -1.871995 -0.128561 1.399274 -2.013647 -0.399001
127 -1.184442 1.633850 -0.489806 0.806896 -0.654125 -0.324203 -1.297638
542 0.627854 2.166200 -1.384347 1.110795 -0.604388 0.513683 -0.468804
370 -1.330248 0.617371 -1.086532 0.939956 -1.523047 -0.029272 0.894390
.. ... ... ... ... ... ... ...
793 -0.358699 1.859517 -0.250568 -1.297332 -1.747403 -0.402763 1.328310
365 -0.079718 -0.263842 0.747338 0.929554 0.426811 -1.590757 1.366447
608 0.655518 2.888275 -1.833586 -1.459779 0.528316 1.313325 -0.562842
781 -1.133150 1.232298 -0.515253 0.174776 -0.131612 -1.374035 0.690224
649 -2.154564 1.280369 -0.834181 1.662134 -0.490512 0.051132 1.668837
X0 X1
504 0.423434 -0.820791
634 -0.399001 -2.013647
127 -1.297638 -0.324203
542 -0.468804 0.513683
370 0.894390 -0.029272
.. ... ...
793 1.328310 -0.402763
365 1.366447 -1.590757
608 -0.562842 1.313325
781 0.690224 -1.374035
649 1.668837 0.051132
[800 rows x 9 columns], 'y': 504 4.307409
634 8.990907
127 2.218793
542 12.169721
370 6.533270
...
793 9.029191
365 15.195618
608 13.248344
781 8.454186
649 11.515556
Name: y, Length: 800, dtype: float64, 'treatment': 504 True
634 True
127 True
542 True
370 True
...
793 True
365 True
608 True
781 True
649 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: sMAPE (Control): 0.5449
INFO:causalml: sMAPE (Treatment): 0.1569
INFO:causalml: Gini (Control): 0.7369
INFO:causalml: Gini (Treatment): 0.9940
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0360
INFO:causalml: RMSE (Treatment): 0.6878
INFO:causalml: sMAPE (Control): 0.5334
INFO:causalml: sMAPE (Treatment): 0.1338
INFO:causalml: Gini (Control): 0.7495
INFO:causalml: Gini (Treatment): 0.9950
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
175 -1.154340 0.806588 -0.662689 0.887440 0.111731 -1.009443 2.862545
357 -0.393043 -0.896794 -0.679593 -0.767907 -0.184818 0.503640 -0.556493
833 0.105901 0.316176 0.723477 1.307736 -0.792919 -1.127981 1.166249
189 0.449357 0.147778 1.294543 -0.691706 -3.244261 -0.423599 0.935502
544 -1.005914 0.255475 -1.627301 1.838873 0.013614 -1.474838 1.050279
.. ... ... ... ... ... ... ...
289 0.772794 0.012983 -0.390292 0.616515 1.060846 -1.481334 1.630755
695 -0.197821 -0.512162 0.067361 0.935517 -0.381064 -1.154606 0.317349
677 -0.926078 0.166307 -2.183101 1.988610 -0.286812 -1.952046 0.131363
607 -0.713550 -0.806284 -0.339457 -0.279553 -0.477920 -0.690686 -0.221325
334 -0.156694 0.911286 0.765684 0.401905 -1.416657 -2.667282 -1.314160
X0 X1
175 2.862545 -1.009443
357 -0.556493 0.503640
833 1.166249 -1.127981
189 0.935502 -0.423599
544 1.050279 -1.474838
.. ... ...
289 1.630755 -1.481334
695 0.317349 -1.154606
677 0.131363 -1.952046
607 -0.221325 -0.690686
334 -1.314160 -2.667282
[800 rows x 9 columns], 'y': 175 17.721185
357 4.629609
833 13.445887
189 5.702358
544 10.741956
...
289 19.767563
695 8.766754
677 6.044637
607 3.571733
334 -0.271330
Name: y, Length: 800, dtype: float64, 'treatment': 175 True
357 True
833 True
189 True
544 True
...
289 True
695 True
677 True
607 True
334 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0888
INFO:causalml: RMSE (Treatment): 0.7248
INFO:causalml: sMAPE (Control): 0.5474
INFO:causalml: sMAPE (Treatment): 0.1538
INFO:causalml: Gini (Control): 0.7380
INFO:causalml: Gini (Treatment): 0.9949
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0995
INFO:causalml: RMSE (Treatment): 0.7069
INFO:causalml: sMAPE (Control): 0.5420
INFO:causalml: sMAPE (Treatment): 0.1515
INFO:causalml: Gini (Control): 0.7201
INFO:causalml: Gini (Treatment): 0.9951
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0859
INFO:causalml: RMSE (Treatment): 0.7073
{'X': W4 W2 W1 W3 W0 X1 X0 \
228 -0.479531 0.804877 -0.334062 0.447143 0.576800 -0.277841 -0.766331
866 -2.492060 0.007731 -0.940262 -0.496057 1.104068 0.043952 0.520345
851 -1.580498 2.916707 -1.305058 0.877563 0.733961 -1.876975 2.623342
795 -1.189871 1.612262 -1.396546 -0.154045 0.178844 0.278181 -0.852625
241 -0.810324 2.347069 -0.803031 1.814552 0.121529 -2.824841 -0.307345
.. ... ... ... ... ... ... ...
583 -0.820218 -0.945137 -1.568877 -0.082810 0.614237 -0.346996 0.919443
74 -0.996694 0.160173 -2.637286 -2.023282 1.303478 -1.990375 1.207325
453 -1.249839 -0.644978 -0.359153 1.084902 -0.516596 -0.365041 -0.139304
723 -0.107996 1.393754 0.825508 0.735281 -0.586520 -0.348836 0.538970
874 0.534013 2.308714 0.793617 1.992239 -1.610429 -0.414126 1.030813
X0 X1
228 -0.766331 -0.277841
866 0.520345 0.043952
851 2.623342 -1.876975
795 -0.852625 0.278181
241 -0.307345 -2.824841
.. ... ...
583 0.919443 -0.346996
74 1.207325 -1.990375
453 -0.139304 -0.365041
723 0.538970 -0.348836
874 1.030813 -0.414126
[800 rows x 9 columns], 'y': 228 8.255998
866 6.414822
851 18.155148
795 5.028396
241 7.793042
...
583 -2.819370
74 8.688916
453 4.442757
723 12.592456
874 16.052226
Name: y, Length: 800, dtype: float64, 'treatment': 228 True
866 True
851 True
795 True
241 True
...
583 False
74 True
453 True
723 True
874 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
451 -0.565758 1.128663 -0.324990 -0.337899 -0.015063 0.346414 0.109342
945 0.033044 1.015786 0.124006 -0.242485 -0.539339 -2.297596 1.009465
145 -2.815317 1.548436 -0.624088 0.844806 0.438846 0.070108 -0.126092
777 -0.500132 1.841908 0.773237 -0.146416 -0.489405 -1.162506 1.188357
422 -1.830252 0.894077 -0.267716 -0.367326 2.202751 -0.079619 0.119763
.. ... ... ... ... ... ... ...
293 -2.019915 -0.918739 -1.767926 -1.403425 -0.740373 -1.576824 0.279021
84 -1.231904 0.946563 -0.520574 -1.241545 -1.073605 0.279123 0.201559
549 1.093852 0.562148 -1.545915 -0.970186 -0.027322 0.044818 1.075594
315 -0.753510 0.301264 1.390165 1.628534 0.274823 -0.437217 0.126621
426 -0.479176 1.237188 -0.726685 -0.314696 0.767152 -0.740509 -0.373064
X0 X1
451 0.109342 0.346414
945 1.009465 -2.297596
145 -0.126092 0.070108
777 1.188357 -1.162506
422 0.119763 -0.079619
.. ... ...
293 0.279021 -1.576824
84 0.201559 0.279123
549 1.075594 0.044818
315 0.126621 -0.437217
426 -0.373064 -0.740509
[800 rows x 9 columns], 'y': 451 9.760052
945 10.461920
145 -4.715614
777 12.450890
422 11.141529
...
293 -11.609205
84 -7.210816
549 15.679880
315 11.545213
426 8.947595
Name: y, Length: 800, dtype: float64, 'treatment': 451 True
945 True
145 False
777 True
422 True
...
293 False
84 False
549 True
315 True
426 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
174 -1.209450 2.573548 -1.875041 0.466606 -2.593907 -0.787080 0.157327
660 -1.323851 1.441421 0.356298 -1.619747 1.211768 -0.134022 0.702311
480 -0.377755 0.312070 0.399832 1.532559 0.348411 0.225440 0.753623
919 0.927871 1.119628 -0.747494 -0.682620 0.435117 -2.887356 0.670618
774 -0.770624 0.071105 0.522571 -0.979329 0.197455 -1.304148 0.066355
.. ... ... ... ... ... ... ...
875 -2.411078 0.159398 0.119580 0.748787 -0.457547 0.313736 -0.560625
568 0.513430 0.522040 0.017360 -0.306262 -0.660055 -1.021097 1.297397
375 -1.851590 -0.485257 -0.505663 -0.368564 -1.023961 -1.380998 1.320727
106 -1.469398 1.456738 0.120477 -0.396731 -2.091289 -1.960327 0.856698
713 -0.587834 2.036860 -1.408772 1.303268 -0.384541 -0.825095 -0.057160
X0 X1
174 0.157327 -0.787080
660 0.702311 -0.134022
480 0.753623 0.225440
919 0.670618 -2.887356
774 0.066355 -1.304148
.. ... ...
875 -0.560625 0.313736
568 1.297397 -1.021097
375 1.320727 -1.380998
106 0.856698 -1.960327
713 -0.057160 -0.825095
[800 rows x 9 columns], 'y': 174 1.619585
660 11.491007
480 15.267030
919 12.794015
774 6.080336
...
875 1.205333
568 13.469854
375 3.740574
106 -8.631314
713 9.135870
Name: y, Length: 800, dtype: float64, 'treatment': 174 True
660 True
480 True
919 True
774 True
...
875 True
568 True
375 True
106 False
713 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: sMAPE (Control): 0.5643
INFO:causalml: sMAPE (Treatment): 0.1448
INFO:causalml: Gini (Control): 0.7575
INFO:causalml: Gini (Treatment): 0.9950
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0283
INFO:causalml: RMSE (Treatment): 0.7092
INFO:causalml: sMAPE (Control): 0.5471
INFO:causalml: sMAPE (Treatment): 0.1393
INFO:causalml: Gini (Control): 0.7309
INFO:causalml: Gini (Treatment): 0.9946
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0752
INFO:causalml: RMSE (Treatment): 0.7231
INFO:causalml: sMAPE (Control): 0.5220
INFO:causalml: sMAPE (Treatment): 0.1459
{'X': W4 W2 W1 W3 W0 X1 X0 \
275 -2.120068 -0.318202 0.171676 1.909965 -0.392065 -1.480635 -1.148364
941 -0.858300 2.689664 0.060630 -0.800292 -0.649474 -0.542851 0.680252
637 -1.283359 0.832725 0.002037 -1.432698 -2.375726 -1.559718 1.057731
132 -4.155165 1.496680 -0.815922 1.278145 -1.973326 0.148467 0.226076
667 -2.198198 0.869380 0.049001 1.338380 -0.046996 0.313350 1.524353
.. ... ... ... ... ... ... ...
775 -2.360643 1.573135 -1.344099 0.823569 -1.137799 -0.227823 0.357754
53 -2.930083 0.879228 -0.579348 0.759465 -0.462352 -2.221874 2.337682
208 -1.829170 0.787526 -0.881231 0.083780 -1.917817 -2.457417 0.754683
157 -1.514941 0.601247 -2.511296 0.377276 0.269567 -0.229923 0.816437
404 0.269959 -1.426995 -0.624877 1.207414 -0.632554 0.826927 -0.342909
X0 X1
275 -1.148364 -1.480635
941 0.680252 -0.542851
637 1.057731 -1.559718
132 0.226076 0.148467
667 1.524353 0.313350
.. ... ...
775 0.357754 -0.227823
53 2.337682 -2.221874
208 0.754683 -2.457417
157 0.816437 -0.229923
404 -0.342909 0.826927
[800 rows x 9 columns], 'y': 275 -1.163599
941 9.630585
637 -10.850731
132 -3.629107
667 11.985876
...
775 -7.934090
53 7.558222
208 -9.928296
157 8.671216
404 -1.323791
Name: y, Length: 800, dtype: float64, 'treatment': 275 True
941 True
637 False
132 True
667 True
...
775 False
53 True
208 False
157 True
404 False
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
49 -0.982952 2.225363 -1.526931 -0.694241 0.029243 -0.455032 0.234971
682 -0.223833 1.310405 -0.330832 0.125670 1.368049 0.141310 -0.773242
280 -0.924446 -0.495998 -1.067446 -0.475160 -0.560881 -1.593906 1.057462
220 0.757100 1.090061 -0.251709 0.571761 -1.084509 -1.752894 0.512210
862 -2.626160 -0.085283 0.861203 0.598807 0.007442 -1.089904 -0.141363
.. ... ... ... ... ... ... ...
269 0.573973 -0.053532 -0.674589 -3.004365 1.021180 -0.146757 0.753673
194 -1.962419 0.749901 -0.124856 1.434591 -0.397338 -0.555662 0.763135
555 -0.854260 -0.912091 -1.765080 1.636757 -1.353961 -2.104020 1.321314
987 -0.812298 1.417451 -0.621462 -0.360324 -1.103340 -1.337427 0.384151
893 -1.491824 0.452183 -1.205184 0.340149 1.739224 -0.632809 0.210046
X0 X1
49 0.234971 -0.455032
682 -0.773242 0.141310
280 1.057462 -1.593906
220 0.512210 -1.752894
862 -0.141363 -1.089904
.. ... ...
269 0.753673 -0.146757
194 0.763135 -0.555662
555 1.321314 -2.104020
987 0.384151 -1.337427
893 0.210046 -0.632809
[800 rows x 9 columns], 'y': 49 8.274390
682 11.702839
280 5.994137
220 10.878908
862 1.585107
...
269 0.249321
194 7.805228
555 -6.061451
987 -4.527449
893 10.444157
Name: y, Length: 800, dtype: float64, 'treatment': 49 True
682 True
280 True
220 True
862 True
...
269 False
194 True
555 False
987 False
893 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: Gini (Control): 0.7268
INFO:causalml: Gini (Treatment): 0.9948
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1012
INFO:causalml: RMSE (Treatment): 0.6904
INFO:causalml: sMAPE (Control): 0.5517
INFO:causalml: sMAPE (Treatment): 0.1317
INFO:causalml: Gini (Control): 0.7215
INFO:causalml: Gini (Treatment): 0.9953
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0529
INFO:causalml: RMSE (Treatment): 0.6916
INFO:causalml: sMAPE (Control): 0.5471
{'X': W4 W2 W1 W3 W0 X1 X0 \
965 -0.258222 2.196243 -1.509052 0.242610 -0.852991 -0.125788 3.020499
18 -1.721390 0.991295 -1.008932 1.539819 -0.923055 -0.609885 -0.196033
816 -0.262987 0.921280 -0.389069 -0.883456 -2.158824 -1.767588 -0.312548
373 -0.576617 0.832892 -0.252974 2.508469 -0.393241 0.636110 0.102158
39 -0.961481 1.275170 -1.485334 -0.763943 -1.116911 0.131391 1.712740
.. ... ... ... ... ... ... ...
127 -1.184442 1.633850 -0.489806 0.806896 -0.654125 -0.324203 -1.297638
798 0.298268 1.287738 -0.339625 0.484676 -1.361646 -0.844488 0.584065
240 -1.161647 1.005936 0.248576 1.135152 -0.087861 -0.969873 -0.362578
319 -0.246796 1.042340 0.473929 -1.882334 -1.252649 -0.129804 -2.165228
86 -1.171030 0.999708 -0.474575 -0.002353 1.214732 -0.432952 -1.419492
X0 X1
965 3.020499 -0.125788
18 -0.196033 -0.609885
816 -0.312548 -1.767588
373 0.102158 0.636110
39 1.712740 0.131391
.. ... ...
127 -1.297638 -0.324203
798 0.584065 -0.844488
240 -0.362578 -0.969873
319 -2.165228 -0.129804
86 -1.419492 -0.432952
[800 rows x 9 columns], 'y': 965 19.735711
18 -5.046192
816 -0.020121
373 12.268099
39 -6.109185
...
127 2.218793
798 10.206839
240 6.512254
319 -2.951778
86 4.893758
Name: y, Length: 800, dtype: float64, 'treatment': 965 True
18 False
816 True
373 True
39 False
...
127 True
798 True
240 True
319 True
86 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
355 -0.326494 2.433717 0.080853 1.915810 -0.164674 0.466589 -0.152236
586 -1.822525 1.328268 -0.580694 0.434084 -1.937340 0.184012 3.008666
116 -1.086365 -0.990762 0.079434 1.325440 1.224208 0.738869 0.436850
631 0.271998 2.338601 -1.112341 1.567964 -0.208038 -0.964256 0.333245
94 -0.994409 -0.051791 -0.396042 0.809534 0.517539 -0.681357 0.730109
.. ... ... ... ... ... ... ...
227 -0.757316 2.009235 -0.832385 1.297304 -0.017571 -1.484499 0.073045
643 -0.837543 2.690282 -0.956587 1.519004 -3.148478 1.188059 1.128666
834 -0.921188 0.601325 -1.805151 0.607381 0.656701 0.552350 0.119174
646 -0.626251 1.021268 0.186793 1.691995 -1.534219 -0.559809 0.720521
530 -1.096231 -0.378584 -1.082200 0.789542 -0.662083 -1.309586 1.838881
X0 X1
355 -0.152236 0.466589
586 3.008666 0.184012
116 0.436850 0.738869
631 0.333245 -0.964256
94 0.730109 -0.681357
.. ... ...
227 0.073045 -1.484499
643 1.128666 1.188059
834 0.119174 0.552350
646 0.720521 -0.559809
530 1.838881 -1.309586
[800 rows x 9 columns], 'y': 355 13.712619
586 -8.767996
116 13.066025
631 14.220450
94 10.995359
...
227 9.555874
643 9.118838
834 10.523346
646 9.399353
530 10.101463
Name: y, Length: 800, dtype: float64, 'treatment': 355 True
586 False
116 True
631 True
94 True
...
227 True
643 True
834 True
646 True
530 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: sMAPE (Treatment): 0.1404
INFO:causalml: Gini (Control): 0.7361
INFO:causalml: Gini (Treatment): 0.9952
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0703
INFO:causalml: RMSE (Treatment): 0.6898
INFO:causalml: sMAPE (Control): 0.5459
INFO:causalml: sMAPE (Treatment): 0.1425
INFO:causalml: Gini (Control): 0.7482
INFO:causalml: Gini (Treatment): 0.9953
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1016
INFO:causalml: RMSE (Treatment): 0.7318
INFO:causalml: sMAPE (Control): 0.5510
INFO:causalml: sMAPE (Treatment): 0.1584
INFO:causalml: Gini (Control): 0.7415
INFO:causalml: Gini (Treatment): 0.9951
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
705 0.261741 3.188563 -2.010226 -0.517940 1.029141 0.040541 0.750995
44 0.360294 0.124152 -2.197239 -1.328035 -0.866502 -0.042365 0.714713
738 -0.532602 1.680468 -1.570149 2.071328 -0.883423 -2.507779 0.510461
359 -1.250892 0.608337 -1.159236 1.196291 -2.448155 -1.418204 2.171817
531 -1.304303 -0.065667 -1.069981 0.533144 1.279208 -0.691485 -0.259040
.. ... ... ... ... ... ... ...
275 -2.120068 -0.318202 0.171676 1.909965 -0.392065 -1.480635 -1.148364
128 -0.446814 1.132974 -0.280832 -0.265640 0.705652 0.138788 1.457893
633 -2.030034 -0.174624 -0.342485 0.323698 -1.221663 0.242803 -0.377460
502 -1.817353 2.122041 -2.913312 1.536276 -0.699921 -0.900995 1.371631
971 -1.011609 0.842579 -1.257641 1.094270 0.446977 1.836771 1.109406
X0 X1
705 0.750995 0.040541
44 0.714713 -0.042365
738 0.510461 -2.507779
359 2.171817 -1.418204
531 -0.259040 -0.691485
.. ... ...
275 -1.148364 -1.480635
128 1.457893 0.138788
633 -0.377460 0.242803
502 1.371631 -0.900995
971 1.109406 1.836771
[800 rows x 9 columns], 'y': 705 18.039614
44 8.606075
738 8.470271
359 7.556557
531 7.735845
...
275 -1.163599
128 16.791480
633 -0.246762
502 9.319528
971 16.046613
Name: y, Length: 800, dtype: float64, 'treatment': 705 True
44 True
738 True
359 True
531 True
...
275 True
128 True
633 True
502 True
971 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
75 -0.681840 -0.860902 -0.003540 0.004867 -0.711607 1.445133 2.210988
791 -0.302223 -0.035221 -0.779010 -1.067815 -1.088018 1.298864 1.837893
668 -0.124828 0.334842 0.337000 -0.098033 -0.948690 -0.993841 1.156376
861 -2.010612 -1.734882 -0.315201 0.998088 0.426792 -0.740070 0.178178
708 -0.500479 1.096561 0.068238 -0.285794 -0.225941 -1.796636 1.564528
.. ... ... ... ... ... ... ...
491 0.047326 0.391397 -0.404472 0.060057 0.642744 -0.800913 -0.652640
8 -1.192098 0.543069 0.448059 1.496816 1.148883 -0.101334 0.352319
332 -1.250673 0.380127 -0.875099 1.332656 0.562342 0.345025 1.790799
202 -1.442253 1.720388 1.836666 1.221145 -0.572915 -1.254973 -1.342614
890 -1.222633 2.135828 -0.734609 -0.488569 -0.600416 -0.479990 -0.460961
X0 X1
75 2.210988 1.445133
791 1.837893 1.298864
668 1.156376 -0.993841
861 0.178178 -0.740070
708 1.564528 -1.796636
.. ... ...
491 -0.652640 -0.800913
8 0.352319 -0.101334
332 1.790799 0.345025
202 -1.342614 -1.254973
890 -0.460961 -0.479990
[800 rows x 9 columns], 'y': 75 -4.842126
791 12.700214
668 10.579344
861 4.083148
708 12.369009
...
491 8.770425
8 13.374297
332 16.296656
202 2.297590
890 -3.809211
Name: y, Length: 800, dtype: float64, 'treatment': 75 False
791 True
668 True
861 True
708 True
...
491 True
8 True
332 True
202 True
890 False
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9884
INFO:causalml: RMSE (Treatment): 0.6927
INFO:causalml: sMAPE (Control): 0.5061
INFO:causalml: sMAPE (Treatment): 0.1410
INFO:causalml: Gini (Control): 0.7191
INFO:causalml: Gini (Treatment): 0.9945
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9921
INFO:causalml: RMSE (Treatment): 0.7493
INFO:causalml: sMAPE (Control): 0.5346
INFO:causalml: sMAPE (Treatment): 0.1501
INFO:causalml: Gini (Control): 0.7535
INFO:causalml: Gini (Treatment): 0.9943
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0065
INFO:causalml: RMSE (Treatment): 0.6871
INFO:causalml: sMAPE (Control): 0.5569
INFO:causalml: sMAPE (Treatment): 0.1468
INFO:causalml: Gini (Control): 0.7082
INFO:causalml: Gini (Treatment): 0.9952
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
84 -1.231904 0.946563 -0.520574 -1.241545 -1.073605 0.279123 0.201559
920 -2.817866 0.619407 -1.383961 -0.429572 0.136050 -0.313979 1.711518
406 -1.787177 0.601264 -0.241539 -0.288932 0.204519 1.070860 0.778961
841 -0.646074 -0.355693 -1.037555 1.155296 -0.106020 -1.428374 0.724408
700 -1.952536 -0.329336 -1.215430 0.057645 -0.943685 -0.856869 2.159186
.. ... ... ... ... ... ... ...
88 0.116208 0.595981 -0.004589 2.371107 0.664072 1.005779 0.675959
703 -0.880997 -1.820627 0.171736 -0.167854 0.599802 -2.011412 -0.082251
787 0.106762 2.948496 -1.895033 -1.510659 -0.813685 -0.585402 -0.112157
565 0.489147 1.219821 -1.070019 0.305099 0.624808 -0.830622 1.045480
672 -1.285233 1.492835 -0.461824 -1.224488 -2.543523 -0.472754 1.225212
X0 X1
84 0.201559 0.279123
920 1.711518 -0.313979
406 0.778961 1.070860
841 0.724408 -1.428374
700 2.159186 -0.856869
.. ... ...
88 0.675959 1.005779
703 -0.082251 -2.011412
787 -0.112157 -0.585402
565 1.045480 -0.830622
672 1.225212 -0.472754
[800 rows x 9 columns], 'y': 84 -7.210816
920 -8.542729
406 9.585905
841 9.168319
700 -9.193834
...
88 19.338740
703 -3.147667
787 7.397373
565 17.014565
672 3.326896
Name: y, Length: 800, dtype: float64, 'treatment': 84 False
920 False
406 True
841 True
700 False
...
88 True
703 False
787 True
565 True
672 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
597 -0.321245 0.240069 -1.490242 2.231212 -0.904581 0.578349 -0.009237
904 -1.109443 3.107200 -0.951024 -0.079768 1.948789 -1.132518 -0.890302
290 0.299643 -1.028151 0.230684 -0.517070 0.924262 -1.450635 0.759954
909 -0.448326 1.299826 0.401639 -0.500486 -1.006631 -0.906303 1.442992
875 -2.411078 0.159398 0.119580 0.748787 -0.457547 0.313736 -0.560625
.. ... ... ... ... ... ... ...
453 -1.249839 -0.644978 -0.359153 1.084902 -0.516596 -0.365041 -0.139304
430 -0.536437 -0.421504 -0.788914 -1.566788 -0.855747 -0.483673 0.158809
116 -1.086365 -0.990762 0.079434 1.325440 1.224208 0.738869 0.436850
634 -0.085908 0.582399 -1.871995 -0.128561 1.399274 -2.013647 -0.399001
734 -2.534543 1.297053 -0.227526 -0.605377 -1.703765 -0.280342 0.415044
X0 X1
597 -0.009237 0.578349
904 -0.890302 -1.132518
290 0.759954 -1.450635
909 1.442992 -0.906303
875 -0.560625 0.313736
.. ... ...
453 -0.139304 -0.365041
430 0.158809 -0.483673
116 0.436850 0.738869
634 -0.399001 -2.013647
734 0.415044 -0.280342
[800 rows x 9 columns], 'y': 597 -1.143963
904 10.065464
290 12.664366
909 11.235374
875 1.205333
...
453 4.442757
430 3.344323
116 13.066025
634 8.990907
734 -0.213830
Name: y, Length: 800, dtype: float64, 'treatment': 597 False
904 True
290 True
909 True
875 True
...
453 True
430 True
116 True
634 True
734 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
90 0.097345 0.533868 -1.112249 0.999274 0.230117 -1.125698 0.717416
686 -1.377233 -0.617476 -0.353271 2.000711 -1.831548 0.632213 0.262429
240 -1.161647 1.005936 0.248576 1.135152 -0.087861 -0.969873 -0.362578
511 0.263820 1.872437 -0.939853 1.755917 -1.252826 1.759191 0.714215
622 -0.848690 -0.845794 0.267025 -0.137135 0.356153 -0.001756 0.376872
.. ... ... ... ... ... ... ...
671 -1.805567 1.966280 0.355705 0.675031 -1.531579 -0.217720 -0.701737
964 0.753382 0.592423 -0.618551 0.045706 -0.493502 -1.581298 -1.715736
299 -1.370319 0.104371 -0.773003 1.741095 0.119556 -1.227923 -0.272634
572 -2.548463 -0.098732 -0.957317 0.639523 -0.249403 1.104659 -0.047994
754 -1.008916 0.089333 -0.381037 1.182553 0.653293 -0.475920 0.036262
X0 X1
90 0.717416 -1.125698
686 0.262429 0.632213
240 -0.362578 -0.969873
511 0.714215 1.759191
622 0.376872 -0.001756
.. ... ...
671 -0.701737 -0.217720
964 -1.715736 -1.581298
299 -0.272634 -1.227923
572 -0.047994 1.104659
754 0.036262 -0.475920
[800 rows x 9 columns], 'y': 90 13.341932
686 4.432389
240 6.512254
511 15.928076
622 8.845133
...
671 -6.150284
964 3.134159
299 5.614664
572 -8.024569
754 9.673575
Name: y, Length: 800, dtype: float64, 'treatment': 90 True
686 True
240 True
511 True
622 True
...
671 False
964 True
299 True
572 False
754 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0987
INFO:causalml: RMSE (Treatment): 0.7208
INFO:causalml: sMAPE (Control): 0.5237
INFO:causalml: sMAPE (Treatment): 0.1429
INFO:causalml: Gini (Control): 0.7470
INFO:causalml: Gini (Treatment): 0.9951
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0540
INFO:causalml: RMSE (Treatment): 0.7624
INFO:causalml: sMAPE (Control): 0.5464
INFO:causalml: sMAPE (Treatment): 0.1583
INFO:causalml: Gini (Control): 0.7329
INFO:causalml: Gini (Treatment): 0.9945
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1489
INFO:causalml: RMSE (Treatment): 0.7569
INFO:causalml: sMAPE (Control): 0.5456
INFO:causalml: sMAPE (Treatment): 0.1493
INFO:causalml: Gini (Control): 0.7273
INFO:causalml: Gini (Treatment): 0.9940
{'X': W4 W2 W1 W3 W0 X1 X0 \
334 -0.156694 0.911286 0.765684 0.401905 -1.416657 -2.667282 -1.314160
262 -1.630045 -1.251623 -0.321312 1.248217 0.588834 -0.498320 0.369726
674 -1.388549 1.485270 -0.646514 -0.090141 1.767213 0.077538 -0.650185
955 -0.372062 0.536404 -1.497404 1.331291 1.949449 -0.806243 1.113560
832 -0.682884 1.926730 -0.161279 -0.512041 -0.170792 -1.586715 0.243828
.. ... ... ... ... ... ... ...
28 0.355363 -1.712344 -0.541527 -1.500008 -0.178104 -0.523930 -0.313656
582 -1.856578 1.519025 -0.354817 1.777607 -0.103456 -0.540906 0.894554
294 0.718662 0.293405 -0.329930 0.322284 -0.725980 -1.672422 0.046675
846 -1.672185 -0.347375 0.787428 0.336686 0.622999 0.804101 1.251836
716 -1.737178 1.386498 -1.564507 -1.024549 1.582414 -0.183054 0.305977
X0 X1
334 -1.314160 -2.667282
262 0.369726 -0.498320
674 -0.650185 0.077538
955 1.113560 -0.806243
832 0.243828 -1.586715
.. ... ...
28 -0.313656 -0.523930
582 0.894554 -0.540906
294 0.046675 -1.672422
846 1.251836 0.804101
716 0.305977 -0.183054
[800 rows x 9 columns], 'y': 334 -0.271330
262 7.461448
674 9.459822
955 18.503792
832 7.911675
...
28 4.753158
582 10.549091
294 8.885443
846 12.705539
716 9.358799
Name: y, Length: 800, dtype: float64, 'treatment': 334 True
262 True
674 True
955 True
832 True
...
28 True
582 True
294 True
846 True
716 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
475 -1.371406 -1.789706 -1.298206 -1.611236 -0.709442 -0.195347 2.724470
588 -0.930255 -0.378142 0.632255 0.279449 -1.818598 -1.226886 0.208515
279 -2.042622 -0.483061 -0.027763 0.310754 0.006903 0.717223 1.415660
206 0.034341 -1.189055 -0.976649 0.149847 1.575362 -0.130203 2.269800
952 -0.623857 0.509187 -1.613917 -0.527539 -0.021147 -1.638291 1.771485
.. ... ... ... ... ... ... ...
343 -1.245795 1.748387 0.828184 -1.775403 -0.972468 -0.866709 0.489782
843 -1.819689 2.321605 1.205835 1.378205 -0.687589 -1.421073 -0.008063
469 -1.955975 0.090817 0.294803 -2.001217 -0.945376 -1.628086 1.883115
369 -2.390398 0.327099 -0.741555 -1.805522 -0.865166 -1.456077 -2.343644
111 1.024268 0.556637 -0.514663 1.858435 -0.414872 -0.567619 0.793652
X0 X1
475 2.724470 -0.195347
588 0.208515 -1.226886
279 1.415660 0.717223
206 2.269800 -0.130203
952 1.771485 -1.638291
.. ... ...
343 0.489782 -0.866709
843 -0.008063 -1.421073
469 1.883115 -1.628086
369 -2.343644 -1.456077
111 0.793652 -0.567619
[800 rows x 9 columns], 'y': 475 -10.586297
588 -7.223205
279 -6.155145
206 20.680223
952 -2.868485
...
343 4.731928
843 6.032900
469 4.435916
369 -11.558437
111 16.735009
Name: y, Length: 800, dtype: float64, 'treatment': 475 False
588 False
279 False
206 True
952 False
...
343 True
843 True
469 True
369 False
111 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
899 -0.395984 -0.753509 -0.320954 -0.871588 -1.254406 -0.867205 0.087498
34 0.276106 2.330464 0.579228 -0.077358 0.414878 1.933343 1.404165
761 -1.783477 -0.235446 -0.829345 -1.351781 0.988020 -0.599609 1.020585
699 -1.175823 0.350680 0.033996 0.794509 -0.475092 -2.358432 0.259472
546 -2.888766 0.186649 0.030494 0.288355 -1.192114 -0.335307 1.980589
.. ... ... ... ... ... ... ...
72 -2.020604 -1.051226 -0.996921 -0.824436 -1.488663 -0.206553 0.489298
30 -1.029675 -0.036475 0.168119 0.799758 0.713907 -1.117296 0.492739
576 -0.258472 1.109831 0.044998 0.470214 0.134336 -1.293955 1.695302
678 0.508374 0.644654 -0.261807 0.486776 -1.449243 0.145155 1.107169
669 -0.015285 1.132134 -0.997982 0.382392 0.634601 -2.152286 -0.881791
X0 X1
899 0.087498 -0.867205
34 1.404165 1.933343
761 1.020585 -0.599609
699 0.259472 -2.358432
546 1.980589 -0.335307
.. ... ...
72 0.489298 -0.206553
30 0.492739 -1.117296
576 1.695302 -1.293955
678 1.107169 0.145155
669 -0.881791 -2.152286
[800 rows x 9 columns], 'y': 899 2.709571
34 22.166660
761 7.959767
699 4.759513
546 -11.053337
...
72 -12.586391
30 10.313749
576 16.021321
678 13.061989
669 6.961904
Name: y, Length: 800, dtype: float64, 'treatment': 899 True
34 True
761 True
699 True
546 False
...
72 False
30 True
576 True
678 True
669 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0130
INFO:causalml: RMSE (Treatment): 0.7012
INFO:causalml: sMAPE (Control): 0.5313
INFO:causalml: sMAPE (Treatment): 0.1381
INFO:causalml: Gini (Control): 0.7394
INFO:causalml: Gini (Treatment): 0.9951
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
{'X': W4 W2 W1 W3 W0 X1 X0 \
946 -0.056748 1.082737 0.733627 1.643594 -0.787399 -1.668734 1.968422
838 -0.753922 -0.045816 -0.873461 1.047785 -0.824178 -1.028226 -0.543500
677 -0.926078 0.166307 -2.183101 1.988610 -0.286812 -1.952046 0.131363
805 -2.622025 -0.308385 -0.881486 -0.183280 0.289018 -2.986494 0.245462
75 -0.681840 -0.860902 -0.003540 0.004867 -0.711607 1.445133 2.210988
.. ... ... ... ... ... ... ...
790 -0.783165 1.865815 -0.439194 0.520276 -0.904192 0.041655 1.027622
410 -0.703120 0.450567 -0.504908 0.896033 -1.220663 -3.269095 -1.609582
968 -0.626450 0.610291 -0.847638 0.077436 0.480144 -1.839511 0.703036
615 -1.312910 0.549883 -0.743413 1.273369 -2.435562 -1.071918 2.090585
864 -1.315606 1.131888 -1.274700 -1.261592 -1.388695 -0.667723 0.600493
X0 X1
946 1.968422 -1.668734
838 -0.543500 -1.028226
677 0.131363 -1.952046
805 0.245462 -2.986494
75 2.210988 1.445133
.. ... ...
790 1.027622 0.041655
410 -1.609582 -3.269095
968 0.703036 -1.839511
615 2.090585 -1.071918
864 0.600493 -0.667723
[800 rows x 9 columns], 'y': 946 16.526801
838 3.145267
677 6.044637
805 -0.721618
75 -4.842126
...
790 -2.228632
410 -3.800252
968 10.038489
615 -8.516564
864 -8.539115
Name: y, Length: 800, dtype: float64, 'treatment': 946 True
838 True
677 True
805 True
75 False
...
790 False
410 True
968 True
615 False
864 False
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
595 -1.371638 -0.038092 0.472554 0.208273 0.608900 -0.921483 0.132164
488 -1.198321 1.515799 0.559743 -0.112272 -1.395849 1.313824 1.637690
140 -0.284186 -0.187325 -1.110371 1.711081 -1.545623 0.250207 -0.110677
318 -0.503101 -0.600895 -0.267185 0.021973 1.464131 -0.551488 -0.234670
863 0.652126 1.026512 0.144431 0.576424 1.624713 -2.511548 1.059346
.. ... ... ... ... ... ... ...
622 -0.848690 -0.845794 0.267025 -0.137135 0.356153 -0.001756 0.376872
601 0.106682 -0.437917 -2.078172 0.727072 -0.486981 -0.797348 0.454592
958 -0.495343 0.847053 -0.028871 -0.718100 -0.871586 -0.630299 -0.132512
519 -0.928551 1.643629 -0.012840 -0.089474 -1.289071 -0.902553 0.551816
393 -1.338523 0.522130 0.208298 1.121733 -0.869824 -0.203718 -0.158286
X0 X1
595 0.132164 -0.921483
488 1.637690 1.313824
140 -0.110677 0.250207
318 -0.234670 -0.551488
863 1.059346 -2.511548
.. ... ...
622 0.376872 -0.001756
601 0.454592 -0.797348
958 -0.132512 -0.630299
519 0.551816 -0.902553
393 -0.158286 -0.203718
[800 rows x 9 columns], 'y': 595 -1.962053
488 12.205540
140 -3.623800
318 10.068543
863 18.929095
...
622 8.845133
601 -1.707354
958 5.051010
519 6.513308
393 -4.149152
Name: y, Length: 800, dtype: float64, 'treatment': 595 False
488 True
140 False
318 True
863 True
...
622 True
601 False
958 True
519 True
393 False
Name: v0, Length: 800, dtype: bool}
INFO:causalml: RMSE (Control): 2.9581
INFO:causalml: RMSE (Treatment): 0.7019
INFO:causalml: sMAPE (Control): 0.5270
INFO:causalml: sMAPE (Treatment): 0.1366
INFO:causalml: Gini (Control): 0.7395
INFO:causalml: Gini (Treatment): 0.9947
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0089
INFO:causalml: RMSE (Treatment): 0.6914
INFO:causalml: sMAPE (Control): 0.5590
INFO:causalml: sMAPE (Treatment): 0.1410
INFO:causalml: Gini (Control): 0.7382
INFO:causalml: Gini (Treatment): 0.9950
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0407
INFO:causalml: RMSE (Treatment): 0.6737
{'X': W4 W2 W1 W3 W0 X1 X0 \
54 1.459268 1.943608 1.129690 0.548664 -1.340973 -0.812905 -0.963531
785 -1.472432 -1.585313 0.723227 -2.198742 -0.861557 0.282930 -0.095028
295 -0.983868 1.058323 -1.353941 0.550563 -1.213079 0.165130 1.300355
411 -0.546985 0.632225 0.177670 1.152931 -1.341671 -1.043610 0.915882
854 -2.564260 -0.151503 -0.722982 -0.358408 0.118593 -0.081853 0.348541
.. ... ... ... ... ... ... ...
346 -1.786223 0.155241 -0.006492 1.116350 0.851448 -0.701068 0.717681
386 0.144990 2.200438 2.535124 -0.009489 -1.157723 1.477828 -0.341690
986 -0.416562 0.868225 0.665941 0.399819 -1.513787 -1.765043 -0.200477
428 -1.601123 -0.352920 -1.685513 2.750246 -2.723752 0.434913 0.292866
971 -1.011609 0.842579 -1.257641 1.094270 0.446977 1.836771 1.109406
X0 X1
54 -0.963531 -0.812905
785 -0.095028 0.282930
295 1.300355 0.165130
411 0.915882 -1.043610
854 0.348541 -0.081853
.. ... ...
346 0.717681 -0.701068
386 -0.341690 1.477828
986 -0.200477 -1.765043
428 0.292866 0.434913
971 1.109406 1.836771
[800 rows x 9 columns], 'y': 54 9.737109
785 -10.650231
295 9.933260
411 9.164325
854 -8.250436
...
346 10.270986
386 11.776341
986 3.757036
428 1.776248
971 16.046613
Name: y, Length: 800, dtype: float64, 'treatment': 54 True
785 False
295 True
411 True
854 False
...
346 True
386 True
986 True
428 True
971 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
905 -1.248790 0.836818 0.276427 -0.381741 -0.785530 -1.648800 0.638075
702 1.776446 1.312351 0.035714 -0.222481 1.693603 0.366529 0.704185
456 -1.180741 1.678642 0.789419 1.087730 0.037308 0.563234 0.500563
271 -1.683731 -0.490214 1.077274 1.927335 -0.447638 1.027982 -0.317068
191 -0.155299 -0.313327 -1.913569 0.091915 -1.423443 0.136986 -0.041962
.. ... ... ... ... ... ... ...
862 -2.626160 -0.085283 0.861203 0.598807 0.007442 -1.089904 -0.141363
499 -1.577195 -0.178122 0.207028 1.204303 -0.666172 1.145283 0.458618
373 -0.576617 0.832892 -0.252974 2.508469 -0.393241 0.636110 0.102158
932 -1.213129 0.643221 -0.007752 0.320722 -1.204954 0.065085 -0.764774
657 -1.103857 0.975798 0.409175 0.707782 0.346495 -0.957502 0.942159
X0 X1
905 0.638075 -1.648800
702 0.704185 0.366529
456 0.500563 0.563234
271 -0.317068 1.027982
191 -0.041962 0.136986
.. ... ...
862 -0.141363 -1.089904
499 0.458618 1.145283
373 0.102158 0.636110
932 -0.764774 0.065085
657 0.942159 -0.957502
[800 rows x 9 columns], 'y': 905 -5.143310
702 23.877017
456 12.752919
271 6.385709
191 -5.492128
...
862 1.585107
499 8.058945
373 12.268099
932 1.654133
657 12.117853
Name: y, Length: 800, dtype: float64, 'treatment': 905 False
702 True
456 True
271 True
191 False
...
862 True
499 True
373 True
932 True
657 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: sMAPE (Control): 0.5509
INFO:causalml: sMAPE (Treatment): 0.1466
INFO:causalml: Gini (Control): 0.7399
INFO:causalml: Gini (Treatment): 0.9956
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9439
INFO:causalml: RMSE (Treatment): 0.7173
INFO:causalml: sMAPE (Control): 0.5251
INFO:causalml: sMAPE (Treatment): 0.1418
INFO:causalml: Gini (Control): 0.7563
INFO:causalml: Gini (Treatment): 0.9950
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
464 -1.458938 1.066085 -0.038658 -0.458790 0.563506 0.649619 0.007999
142 -1.069820 -0.045581 1.088194 -0.352007 -0.407053 1.435721 1.821025
216 -1.185130 1.723057 -2.436984 -0.947938 -0.797647 -1.237892 0.020300
227 -0.757316 2.009235 -0.832385 1.297304 -0.017571 -1.484499 0.073045
979 -1.320009 -0.547319 0.058828 1.048133 1.078373 -0.857583 0.480911
.. ... ... ... ... ... ... ...
172 -1.078399 1.722034 -1.675423 -0.026819 -0.577141 -1.633102 1.619526
964 0.753382 0.592423 -0.618551 0.045706 -0.493502 -1.581298 -1.715736
159 -1.948368 -0.614462 2.424841 -0.026382 -1.155858 0.788892 1.786834
171 -1.142720 1.363980 -1.309646 -0.806699 -1.397706 0.591713 -0.245067
499 -1.577195 -0.178122 0.207028 1.204303 -0.666172 1.145283 0.458618
X0 X1
464 0.007999 0.649619
142 1.821025 1.435721
216 0.020300 -1.237892
227 0.073045 -1.484499
979 0.480911 -0.857583
.. ... ...
172 1.619526 -1.633102
964 -1.715736 -1.581298
159 1.786834 0.788892
171 -0.245067 0.591713
499 0.458618 1.145283
[800 rows x 9 columns], 'y': 464 8.601975
142 14.255984
216 2.376140
227 9.555874
979 10.393456
...
172 10.160763
964 3.134159
159 9.334761
171 2.573635
499 8.058945
Name: y, Length: 800, dtype: float64, 'treatment': 464 True
142 True
216 True
227 True
979 True
...
172 True
964 True
159 True
171 True
499 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0551
INFO:causalml: RMSE (Treatment): 0.7052
INFO:causalml: sMAPE (Control): 0.5513
INFO:causalml: sMAPE (Treatment): 0.1489
INFO:causalml: Gini (Control): 0.7201
INFO:causalml: Gini (Treatment): 0.9948
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9918
INFO:causalml: RMSE (Treatment): 0.7138
INFO:causalml: sMAPE (Control): 0.5188
INFO:causalml: sMAPE (Treatment): 0.1520
INFO:causalml: Gini (Control): 0.7273
INFO:causalml: Gini (Treatment): 0.9944
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9832
INFO:causalml: RMSE (Treatment): 0.7111
INFO:causalml: sMAPE (Control): 0.5083
INFO:causalml: sMAPE (Treatment): 0.1456
INFO:causalml: Gini (Control): 0.7489
INFO:causalml: Gini (Treatment): 0.9949
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0359
INFO:causalml: RMSE (Treatment): 0.6357
{'X': W4 W2 W1 W3 W0 X1 X0 \
616 -1.830382 0.390144 1.344299 0.522921 -0.493492 -0.066279 -0.126978
441 0.096609 1.592914 -1.201277 -1.185385 -0.135004 0.210872 2.310466
743 -1.698782 0.965766 1.076097 -1.380195 -0.166558 -1.229501 -1.256471
565 0.489147 1.219821 -1.070019 0.305099 0.624808 -0.830622 1.045480
958 -0.495343 0.847053 -0.028871 -0.718100 -0.871586 -0.630299 -0.132512
.. ... ... ... ... ... ... ...
364 -1.078590 1.563574 1.504080 -0.486241 -1.540033 -0.435152 0.956055
965 -0.258222 2.196243 -1.509052 0.242610 -0.852991 -0.125788 3.020499
755 -0.785170 -0.634127 0.249551 -0.613209 0.804813 -1.015528 1.452350
7 0.174130 1.506210 -1.549595 0.782615 -1.878625 -0.626575 1.176085
137 -1.894324 0.875532 -1.274949 -0.005126 -1.668351 -0.299636 -1.162263
X0 X1
616 -0.126978 -0.066279
441 2.310466 0.210872
743 -1.256471 -1.229501
565 1.045480 -0.830622
958 -0.132512 -0.630299
.. ... ...
364 0.956055 -0.435152
965 3.020499 -0.125788
755 1.452350 -1.015528
7 1.176085 -0.626575
137 -1.162263 -0.299636
[800 rows x 9 columns], 'y': 616 4.604313
441 18.248395
743 -1.497744
565 17.014565
958 5.051010
...
364 7.693260
965 19.735711
755 12.541520
7 -2.646268
137 -9.707122
Name: y, Length: 800, dtype: float64, 'treatment': 616 True
441 True
743 True
565 True
958 True
...
364 True
965 True
755 True
7 False
137 False
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
671 -1.805567 1.966280 0.355705 0.675031 -1.531579 -0.217720 -0.701737
16 -0.022696 0.467212 0.670827 -0.516231 -0.682599 1.362676 1.401631
353 -0.079900 1.001506 -0.228440 -0.144542 -1.332903 0.275099 2.373142
480 -0.377755 0.312070 0.399832 1.532559 0.348411 0.225440 0.753623
452 -1.226268 1.393577 0.501651 1.386900 -0.728663 -2.554742 0.738239
.. ... ... ... ... ... ... ...
404 0.269959 -1.426995 -0.624877 1.207414 -0.632554 0.826927 -0.342909
339 -0.174635 1.102320 -0.538718 1.353400 -2.411045 -0.088519 -0.223676
538 -1.000985 2.417859 0.027563 1.436945 1.891137 -2.054885 0.763508
959 -1.282991 1.134722 -1.881201 0.830477 0.965414 1.414359 -1.140110
49 -0.982952 2.225363 -1.526931 -0.694241 0.029243 -0.455032 0.234971
X0 X1
671 -0.701737 -0.217720
16 1.401631 1.362676
353 2.373142 0.275099
480 0.753623 0.225440
452 0.738239 -2.554742
.. ... ...
404 -0.342909 0.826927
339 -0.223676 -0.088519
538 0.763508 -2.054885
959 -1.140110 1.414359
49 0.234971 -0.455032
[800 rows x 9 columns], 'y': 671 -6.150284
16 15.151640
353 16.031327
480 15.267030
452 7.577603
...
404 -1.323791
339 4.815990
538 16.761939
959 7.562645
49 8.274390
Name: y, Length: 800, dtype: float64, 'treatment': 671 False
16 True
353 True
480 True
452 True
...
404 False
339 True
538 True
959 True
49 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
818 -2.294772 1.081263 -0.110948 0.240523 -2.452061 -0.676310 1.024324
441 0.096609 1.592914 -1.201277 -1.185385 -0.135004 0.210872 2.310466
660 -1.323851 1.441421 0.356298 -1.619747 1.211768 -0.134022 0.702311
907 -0.596246 0.342098 0.422666 1.205834 -0.189522 -0.157053 1.625369
150 -2.720297 0.875790 -0.364609 -0.201468 0.001957 -1.103898 0.006235
.. ... ... ... ... ... ... ...
569 -2.828271 0.496613 0.605941 1.991670 1.438382 -1.427814 2.464037
174 -1.209450 2.573548 -1.875041 0.466606 -2.593907 -0.787080 0.157327
618 -0.852827 2.817516 0.994045 0.632066 1.475903 -1.788458 -0.354627
578 -0.125015 -0.484719 -0.554158 -0.644919 -0.352951 -0.169403 0.807828
851 -1.580498 2.916707 -1.305058 0.877563 0.733961 -1.876975 2.623342
X0 X1
818 1.024324 -0.676310
441 2.310466 0.210872
660 0.702311 -0.134022
907 1.625369 -0.157053
150 0.006235 -1.103898
.. ... ...
569 2.464037 -1.427814
174 0.157327 -0.787080
618 -0.354627 -1.788458
578 0.807828 -0.169403
851 2.623342 -1.876975
[800 rows x 9 columns], 'y': 818 -11.770683
441 18.248395
660 11.491007
907 15.569400
150 1.212438
...
569 16.043709
174 1.619585
618 12.340446
578 -2.946371
851 18.155148
Name: y, Length: 800, dtype: float64, 'treatment': 818 False
441 True
660 True
907 True
150 True
...
569 True
174 True
618 True
578 False
851 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
14 -2.078772 1.196831 1.691383 -0.112157 -0.733879 -1.146159 0.723966
287 -2.059567 -0.680278 -2.183921 1.320290 -1.748679 0.879174 0.780425
429 -0.310856 1.184695 0.500596 1.413069 -1.423834 -2.391290 -0.004592
806 -0.731126 0.113323 0.240405 0.593963 -1.053335 -1.951187 2.046437
89 -0.956579 0.802858 -0.416669 0.542902 -0.031293 1.430714 1.345825
.. ... ... ... ... ... ... ...
546 -2.888766 0.186649 0.030494 0.288355 -1.192114 -0.335307 1.980589
279 -2.042622 -0.483061 -0.027763 0.310754 0.006903 0.717223 1.415660
732 -1.876595 1.781727 -0.587176 0.704493 -0.050272 -0.901322 2.047330
642 -1.263921 0.248475 -1.146400 0.651563 -0.523927 0.513736 -0.429372
614 -2.592181 1.103790 -0.570001 0.139735 0.205595 -0.448537 -0.211413
X0 X1
14 0.723966 -1.146159
287 0.780425 0.879174
429 -0.004592 -2.391290
806 2.046437 -1.951187
89 1.345825 1.430714
.. ... ...
546 1.980589 -0.335307
279 1.415660 0.717223
732 2.047330 -0.901322
642 -0.429372 0.513736
614 -0.211413 -0.448537
[800 rows x 9 columns], 'y': 14 5.340331
287 -11.017227
429 5.762485
806 11.154196
89 15.058027
...
546 -11.053337
279 -6.155145
732 -3.133831
642 4.413860
614 -5.992837
Name: y, Length: 800, dtype: float64, 'treatment': 14 True
287 False
429 True
806 True
89 True
...
546 False
279 False
732 False
642 True
614 False
Name: v0, Length: 800, dtype: bool}
INFO:causalml: sMAPE (Control): 0.5428
INFO:causalml: sMAPE (Treatment): 0.1382
INFO:causalml: Gini (Control): 0.7706
INFO:causalml: Gini (Treatment): 0.9965
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9307
INFO:causalml: RMSE (Treatment): 0.6748
INFO:causalml: sMAPE (Control): 0.5415
INFO:causalml: sMAPE (Treatment): 0.1462
INFO:causalml: Gini (Control): 0.7507
INFO:causalml: Gini (Treatment): 0.9955
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0459
INFO:causalml: RMSE (Treatment): 0.6579
INFO:causalml: sMAPE (Control): 0.5067
INFO:causalml: sMAPE (Treatment): 0.1369
INFO:causalml: Gini (Control): 0.7317
INFO:causalml: Gini (Treatment): 0.9958
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
{'X': W4 W2 W1 W3 W0 X1 X0 \
445 -0.093150 0.159054 1.219054 2.768834 -0.538133 -0.508483 1.145099
1 -0.612423 0.591947 -1.160895 1.779737 -1.083905 0.802709 0.713931
259 0.990156 0.812084 -0.696832 -1.386308 -1.233495 1.282252 1.415275
150 -2.720297 0.875790 -0.364609 -0.201468 0.001957 -1.103898 0.006235
845 -1.215958 -0.485289 -1.167214 0.914403 -1.773236 0.103620 -0.518889
.. ... ... ... ... ... ... ...
400 -0.340443 -1.712856 0.329522 1.261908 -0.358655 0.905733 1.694371
340 0.375616 2.217136 -0.666164 -0.970808 0.446217 -0.864206 1.763119
187 0.166212 1.756207 0.174379 0.739862 -0.309621 0.009743 -0.960418
53 -2.930083 0.879228 -0.579348 0.759465 -0.462352 -2.221874 2.337682
392 0.391364 -0.989100 -0.665144 -0.463719 1.025926 0.692766 -0.147856
X0 X1
445 1.145099 -0.508483
1 0.713931 0.802709
259 1.415275 1.282252
150 0.006235 -1.103898
845 -0.518889 0.103620
.. ... ...
400 1.694371 0.905733
340 1.763119 -0.864206
187 -0.960418 0.009743
53 2.337682 -2.221874
392 -0.147856 0.692766
[800 rows x 9 columns], 'y': 445 16.120442
1 11.125450
259 15.171532
150 1.212438
845 -8.309502
...
400 15.161858
340 18.529106
187 9.138120
53 7.558222
392 12.111471
Name: y, Length: 800, dtype: float64, 'treatment': 445 True
1 True
259 True
150 True
845 False
...
400 True
340 True
187 True
53 True
392 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
877 -0.359565 0.826991 -0.179359 -1.811258 1.418593 1.405163 -0.075609
948 0.137207 0.807432 0.012233 -0.321381 -1.727172 -0.265376 1.037937
906 -1.727409 0.768134 0.127817 2.012317 -0.001440 0.690172 0.662514
531 -1.304303 -0.065667 -1.069981 0.533144 1.279208 -0.691485 -0.259040
447 -0.405581 0.228388 -0.346772 -0.788431 -0.808578 -1.461212 -0.094927
.. ... ... ... ... ... ... ...
251 -2.083898 -0.553302 0.342455 1.195262 -0.140618 -0.475982 0.394482
329 -0.721478 0.206043 0.019891 0.334449 -2.015860 0.081232 2.050940
742 -1.894608 0.965814 -2.625684 -0.050702 0.089967 -0.260953 2.020572
291 0.257877 -0.247493 -0.219583 0.077716 -0.585046 0.209063 2.522633
984 -0.468952 1.419946 -1.223588 -0.200703 0.818225 -1.741452 0.553023
X0 X1
877 -0.075609 1.405163
948 1.037937 -0.265376
906 0.662514 0.690172
531 -0.259040 -0.691485
447 -0.094927 -1.461212
.. ... ...
251 0.394482 -0.475982
329 2.050940 0.081232
742 2.020572 -0.260953
291 2.522633 0.209063
984 0.553023 -1.741452
[800 rows x 9 columns], 'y': 877 12.698322
948 9.814477
906 11.554534
531 7.735845
447 3.661764
...
251 5.436045
329 10.777317
742 11.254116
291 18.348778
984 11.332827
Name: y, Length: 800, dtype: float64, 'treatment': 877 True
948 True
906 True
531 True
447 True
...
251 True
329 True
742 True
291 True
984 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0274
INFO:causalml: RMSE (Treatment): 0.6404
INFO:causalml: sMAPE (Control): 0.5697
INFO:causalml: sMAPE (Treatment): 0.1380
INFO:causalml: Gini (Control): 0.7555
INFO:causalml: Gini (Treatment): 0.9963
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1547
INFO:causalml: RMSE (Treatment): 0.7120
INFO:causalml: sMAPE (Control): 0.5614
INFO:causalml: sMAPE (Treatment): 0.1525
INFO:causalml: Gini (Control): 0.7153
INFO:causalml: Gini (Treatment): 0.9952
{'X': W4 W2 W1 W3 W0 X1 X0 \
333 -0.903943 1.303046 -0.373566 0.414038 0.837871 -0.085945 0.009761
600 -2.132836 0.973990 -0.800368 0.209837 -1.462109 -0.379117 -0.646683
296 -0.693534 1.091959 0.118506 1.534617 -1.801390 0.094255 1.938525
769 -1.913252 0.670484 -0.368978 -0.244239 -0.164518 0.285367 1.858510
877 -0.359565 0.826991 -0.179359 -1.811258 1.418593 1.405163 -0.075609
.. ... ... ... ... ... ... ...
463 -1.384868 1.213614 -1.227984 0.542554 0.851906 1.016157 0.823336
129 -0.761571 -0.442922 -1.576714 1.024327 -0.544396 -1.884830 0.425136
309 -0.539594 2.000693 1.298256 0.596046 -2.741050 -0.539698 0.178355
734 -2.534543 1.297053 -0.227526 -0.605377 -1.703765 -0.280342 0.415044
657 -1.103857 0.975798 0.409175 0.707782 0.346495 -0.957502 0.942159
X0 X1
333 0.009761 -0.085945
600 -0.646683 -0.379117
296 1.938525 0.094255
769 1.858510 0.285367
877 -0.075609 1.405163
.. ... ...
463 0.823336 1.016157
129 0.425136 -1.884830
309 0.178355 -0.539698
734 0.415044 -0.280342
657 0.942159 -0.957502
[800 rows x 9 columns], 'y': 333 11.223406
600 -2.038553
296 13.572697
769 -5.821681
877 12.698322
...
463 13.719677
129 5.487315
309 4.869483
734 -0.213830
657 12.117853
Name: y, Length: 800, dtype: float64, 'treatment': 333 True
600 True
296 True
769 False
877 True
...
463 True
129 True
309 True
734 True
657 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
866 -2.492060 0.007731 -0.940262 -0.496057 1.104068 0.043952 0.520345
426 -0.479176 1.237188 -0.726685 -0.314696 0.767152 -0.740509 -0.373064
930 0.236247 0.615868 -0.483059 -0.462038 0.084682 1.027238 -0.515047
649 -2.154564 1.280369 -0.834181 1.662134 -0.490512 0.051132 1.668837
41 0.075080 -0.116355 -0.810933 2.222729 -0.150383 0.082462 -0.018712
.. ... ... ... ... ... ... ...
401 -1.899841 1.517762 -1.564655 1.267017 -0.269945 0.348545 0.354959
90 0.097345 0.533868 -1.112249 0.999274 0.230117 -1.125698 0.717416
290 0.299643 -1.028151 0.230684 -0.517070 0.924262 -1.450635 0.759954
464 -1.458938 1.066085 -0.038658 -0.458790 0.563506 0.649619 0.007999
81 -2.075409 -0.271621 -0.306578 1.035155 0.414936 -0.005484 0.350309
X0 X1
866 0.520345 0.043952
426 -0.373064 -0.740509
930 -0.515047 1.027238
649 1.668837 0.051132
41 -0.018712 0.082462
.. ... ...
401 0.354959 0.348545
90 0.717416 -1.125698
290 0.759954 -1.450635
464 0.007999 0.649619
81 0.350309 -0.005484
[800 rows x 9 columns], 'y': 866 6.414822
426 8.947595
930 10.114187
649 11.515556
41 12.011428
...
401 7.798611
90 13.341932
290 12.664366
464 8.601975
81 7.063312
Name: y, Length: 800, dtype: float64, 'treatment': 866 True
426 True
930 True
649 True
41 True
...
401 True
90 True
290 True
464 True
81 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0349
INFO:causalml: RMSE (Treatment): 0.7215
INFO:causalml: sMAPE (Control): 0.5344
INFO:causalml: sMAPE (Treatment): 0.1396
INFO:causalml: Gini (Control): 0.7418
INFO:causalml: Gini (Treatment): 0.9949
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0516
INFO:causalml: RMSE (Treatment): 0.7011
INFO:causalml: sMAPE (Control): 0.5438
INFO:causalml: sMAPE (Treatment): 0.1449
INFO:causalml: Gini (Control): 0.6956
INFO:causalml: Gini (Treatment): 0.9943
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
311 -0.455229 -0.695322 0.209254 -0.763416 -1.934863 -0.037463 1.273690
120 0.925627 1.150181 -0.372738 1.184429 -1.147969 -0.032255 0.385113
429 -0.310856 1.184695 0.500596 1.413069 -1.423834 -2.391290 -0.004592
322 0.441476 -0.310950 -0.945903 -1.463723 -2.023630 -0.785600 1.276769
86 -1.171030 0.999708 -0.474575 -0.002353 1.214732 -0.432952 -1.419492
.. ... ... ... ... ... ... ...
848 -1.892578 1.453947 -2.287147 0.205164 -0.295408 -1.312249 0.506585
980 -1.323765 1.378697 -1.383845 -0.811301 -1.301810 0.635665 1.740498
569 -2.828271 0.496613 0.605941 1.991670 1.438382 -1.427814 2.464037
127 -1.184442 1.633850 -0.489806 0.806896 -0.654125 -0.324203 -1.297638
502 -1.817353 2.122041 -2.913312 1.536276 -0.699921 -0.900995 1.371631
X0 X1
311 1.273690 -0.037463
120 0.385113 -0.032255
429 -0.004592 -2.391290
322 1.276769 -0.785600
86 -1.419492 -0.432952
.. ... ...
848 0.506585 -1.312249
980 1.740498 0.635665
569 2.464037 -1.427814
127 -1.297638 -0.324203
502 1.371631 -0.900995
[800 rows x 9 columns], 'y': 311 6.548500
120 13.587443
429 5.762485
322 7.004125
86 4.893758
...
848 -5.747920
980 9.526360
569 16.043709
127 2.218793
502 9.319528
Name: y, Length: 800, dtype: float64, 'treatment': 311 True
120 True
429 True
322 True
86 True
...
848 False
980 True
569 True
127 True
502 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
572 -2.548463 -0.098732 -0.957317 0.639523 -0.249403 1.104659 -0.047994
221 -1.138293 0.865923 -1.177382 -0.509397 -2.476264 1.589415 0.625094
352 -0.314322 -0.439802 2.366604 0.701073 -0.609823 0.603549 -0.256803
850 -1.559250 1.506724 0.449602 0.956745 -1.983230 -0.410145 2.749812
582 -1.856578 1.519025 -0.354817 1.777607 -0.103456 -0.540906 0.894554
.. ... ... ... ... ... ... ...
980 -1.323765 1.378697 -1.383845 -0.811301 -1.301810 0.635665 1.740498
811 -1.803447 0.510549 -1.668762 1.850597 -0.358186 -2.226574 2.080508
789 -1.419550 -0.199775 1.439845 -0.043468 -0.070078 0.347234 1.237806
883 -1.053935 -0.020818 -0.218070 -0.163484 -1.436398 0.888213 0.560956
164 -1.968714 0.633982 -0.864566 0.029554 -0.968736 -1.092772 0.316363
X0 X1
572 -0.047994 1.104659
221 0.625094 1.589415
352 -0.256803 0.603549
850 2.749812 -0.410145
582 0.894554 -0.540906
.. ... ...
980 1.740498 0.635665
811 2.080508 -2.226574
789 1.237806 0.347234
883 0.560956 0.888213
164 0.316363 -1.092772
[800 rows x 9 columns], 'y': 572 -8.024569
221 -10.175373
352 8.970110
850 12.795708
582 10.549091
...
980 9.526360
811 10.541175
789 11.103887
883 5.901248
164 1.757613
Name: y, Length: 800, dtype: float64, 'treatment': 572 False
221 False
352 True
850 True
582 True
...
980 True
811 True
789 True
883 True
164 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0202
INFO:causalml: RMSE (Treatment): 0.6791
INFO:causalml: sMAPE (Control): 0.5553
INFO:causalml: sMAPE (Treatment): 0.1368
INFO:causalml: Gini (Control): 0.7275
INFO:causalml: Gini (Treatment): 0.9955
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0764
INFO:causalml: RMSE (Treatment): 0.7291
INFO:causalml: sMAPE (Control): 0.5471
INFO:causalml: sMAPE (Treatment): 0.1549
INFO:causalml: Gini (Control): 0.7327
INFO:causalml: Gini (Treatment): 0.9950
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
720 -0.178107 0.545358 -1.188979 -2.009287 -1.712708 0.183073 2.293672
794 -1.233396 -0.435764 -0.476026 0.431914 0.233094 -1.611720 0.182139
964 0.753382 0.592423 -0.618551 0.045706 -0.493502 -1.581298 -1.715736
738 -0.532602 1.680468 -1.570149 2.071328 -0.883423 -2.507779 0.510461
813 -2.510734 1.799308 -1.388065 0.395407 0.345451 -1.133800 0.417955
.. ... ... ... ... ... ... ...
386 0.144990 2.200438 2.535124 -0.009489 -1.157723 1.477828 -0.341690
975 -0.891387 0.694594 0.240509 1.789194 -0.619145 -1.193071 0.675476
731 -0.792085 2.126007 -1.140046 0.187479 -0.140220 -0.338651 1.396477
807 0.395378 2.501552 0.964778 0.986126 -0.742713 -1.556838 -0.017120
419 -0.220525 -0.582744 0.201690 0.269966 -0.821470 1.089105 1.028671
X0 X1
720 2.293672 0.183073
794 0.182139 -1.611720
964 -1.715736 -1.581298
738 0.510461 -2.507779
813 0.417955 -1.133800
.. ... ...
386 -0.341690 1.477828
975 0.675476 -1.193071
731 1.396477 -0.338651
807 -0.017120 -1.556838
419 1.028671 1.089105
[800 rows x 9 columns], 'y': 720 11.018665
794 5.470791
964 3.134159
738 8.470271
813 5.390940
...
386 11.776341
975 9.860888
731 13.912472
807 11.784838
419 12.060932
Name: y, Length: 800, dtype: float64, 'treatment': 720 True
794 True
964 True
738 True
813 True
...
386 True
975 True
731 True
807 True
419 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
395 -1.795386 0.484380 -0.308798 0.356361 0.933391 -1.198681 0.592933
991 -0.283700 0.699498 0.106398 -1.059915 -2.411506 -0.204126 1.891908
336 -3.093855 1.469971 0.367279 1.174817 -0.729766 -2.114001 0.885400
344 -2.504980 1.383036 -0.141410 -0.360349 -1.132968 -0.013613 1.887884
773 -1.096836 -0.432951 -0.837524 -0.231672 -0.535628 -1.020083 -0.353180
.. ... ... ... ... ... ... ...
979 -1.320009 -0.547319 0.058828 1.048133 1.078373 -0.857583 0.480911
131 -0.636926 1.412123 -1.568989 1.128580 -1.107298 -0.356463 3.129605
409 -0.542454 0.428394 1.357376 0.037163 -0.476170 1.308313 2.058995
807 0.395378 2.501552 0.964778 0.986126 -0.742713 -1.556838 -0.017120
594 -0.485088 0.198923 0.215890 1.387663 0.491391 -1.501354 -0.527038
X0 X1
395 0.592933 -1.198681
991 1.891908 -0.204126
336 0.885400 -2.114001
344 1.887884 -0.013613
773 -0.353180 -1.020083
.. ... ...
979 0.480911 -0.857583
131 3.129605 -0.356463
409 2.058995 1.308313
807 -0.017120 -1.556838
594 -0.527038 -1.501354
[800 rows x 9 columns], 'y': 395 8.681410
991 -7.648859
336 2.926169
344 -9.322258
773 1.630931
...
979 10.393456
131 18.255680
409 17.513846
807 11.784838
594 8.167200
Name: y, Length: 800, dtype: float64, 'treatment': 395 True
991 False
336 True
344 False
773 True
...
979 True
131 True
409 True
807 True
594 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0838
INFO:causalml: RMSE (Treatment): 0.7578
INFO:causalml: sMAPE (Control): 0.5357
INFO:causalml: sMAPE (Treatment): 0.1493
INFO:causalml: Gini (Control): 0.7243
INFO:causalml: Gini (Treatment): 0.9939
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0498
INFO:causalml: RMSE (Treatment): 0.7149
INFO:causalml: sMAPE (Control): 0.5699
INFO:causalml: sMAPE (Treatment): 0.1427
INFO:causalml: Gini (Control): 0.7412
INFO:causalml: Gini (Treatment): 0.9951
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0743
INFO:causalml: RMSE (Treatment): 0.7071
INFO:causalml: sMAPE (Control): 0.5430
INFO:causalml: sMAPE (Treatment): 0.1417
INFO:causalml: Gini (Control): 0.7392
INFO:causalml: Gini (Treatment): 0.9952
{'X': W4 W2 W1 W3 W0 X1 X0 \
893 -1.491824 0.452183 -1.205184 0.340149 1.739224 -0.632809 0.210046
456 -1.180741 1.678642 0.789419 1.087730 0.037308 0.563234 0.500563
368 -2.298170 1.146523 -1.218792 -0.454870 -0.475421 -1.530454 0.327366
558 -0.550544 0.440434 -0.750181 1.612420 0.551244 0.168593 1.698572
287 -2.059567 -0.680278 -2.183921 1.320290 -1.748679 0.879174 0.780425
.. ... ... ... ... ... ... ...
935 -1.612218 0.425603 0.450798 1.795192 -1.030650 0.071948 0.533019
148 -0.302752 -0.391139 -1.411531 -0.984236 -1.414685 -1.430286 1.022603
628 -0.907745 0.221924 -0.912103 0.680653 -0.919082 0.488610 -0.844236
356 -1.087973 1.063452 -0.582690 -0.391019 -0.717769 0.567377 0.968256
39 -0.961481 1.275170 -1.485334 -0.763943 -1.116911 0.131391 1.712740
X0 X1
893 0.210046 -0.632809
456 0.500563 0.563234
368 0.327366 -1.530454
558 1.698572 0.168593
287 0.780425 0.879174
.. ... ...
935 0.533019 0.071948
148 1.022603 -1.430286
628 -0.844236 0.488610
356 0.968256 0.567377
39 1.712740 0.131391
[800 rows x 9 columns], 'y': 893 10.444157
456 12.752919
368 1.367327
558 18.249687
287 -11.017227
...
935 7.518694
148 4.946877
628 -4.505402
356 -4.713297
39 -6.109185
Name: y, Length: 800, dtype: float64, 'treatment': 893 True
456 True
368 True
558 True
287 False
...
935 True
148 True
628 False
356 False
39 False
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
900 -1.528877 0.854363 -0.020892 -0.125090 1.283825 0.408115 -0.168281
363 -1.299538 1.492361 -0.176621 -0.788150 -0.271734 -2.617038 1.663896
692 -1.425142 -0.090768 -2.394217 0.281658 -1.069567 -1.236345 -1.514344
226 -1.070717 0.609382 -3.049646 1.477891 -0.338049 0.433746 0.098532
856 -2.193329 0.959709 -2.021881 -0.809934 -2.201305 -2.098867 -0.278113
.. ... ... ... ... ... ... ...
98 -0.724707 -0.167508 -2.200046 1.316365 -0.652669 1.877820 0.372580
531 -1.304303 -0.065667 -1.069981 0.533144 1.279208 -0.691485 -0.259040
607 -0.713550 -0.806284 -0.339457 -0.279553 -0.477920 -0.690686 -0.221325
522 0.488747 0.260763 -0.084712 2.012467 0.136177 -0.514404 1.454348
813 -2.510734 1.799308 -1.388065 0.395407 0.345451 -1.133800 0.417955
X0 X1
900 -0.168281 0.408115
363 1.663896 -2.617038
692 -1.514344 -1.236345
226 0.098532 0.433746
856 -0.278113 -2.098867
.. ... ...
98 0.372580 1.877820
531 -0.259040 -0.691485
607 -0.221325 -0.690686
522 1.454348 -0.514404
813 0.417955 -1.133800
[800 rows x 9 columns], 'y': 900 9.560536
363 8.937908
692 -8.079772
226 -3.230951
856 -13.300039
...
98 -3.658929
531 7.735845
607 3.571733
522 19.196033
813 5.390940
Name: y, Length: 800, dtype: float64, 'treatment': 900 True
363 True
692 False
226 False
856 False
...
98 False
531 True
607 True
522 True
813 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
695 -0.197821 -0.512162 0.067361 0.935517 -0.381064 -1.154606 0.317349
486 -0.131758 -0.288235 -0.600001 0.396915 0.962738 -1.026124 0.537855
43 -0.954425 1.158370 0.086873 0.568439 -0.884157 -0.410623 1.426287
418 -1.575082 -0.671851 -0.031660 -0.315301 0.096593 0.101204 -0.833223
122 -2.951921 -0.276981 -1.228503 0.841593 0.132569 -1.710101 0.432787
.. ... ... ... ... ... ... ...
142 -1.069820 -0.045581 1.088194 -0.352007 -0.407053 1.435721 1.821025
667 -2.198198 0.869380 0.049001 1.338380 -0.046996 0.313350 1.524353
560 -0.591932 0.047587 -1.357618 -1.008455 -1.341175 0.311592 1.261070
355 -0.326494 2.433717 0.080853 1.915810 -0.164674 0.466589 -0.152236
738 -0.532602 1.680468 -1.570149 2.071328 -0.883423 -2.507779 0.510461
X0 X1
695 0.317349 -1.154606
486 0.537855 -1.026124
43 1.426287 -0.410623
418 -0.833223 0.101204
122 0.432787 -1.710101
.. ... ...
142 1.821025 1.435721
667 1.524353 0.313350
560 1.261070 0.311592
355 -0.152236 0.466589
738 0.510461 -2.507779
[800 rows x 9 columns], 'y': 695 8.766754
486 12.711964
43 11.590880
418 -5.534462
122 -8.281570
...
142 14.255984
667 11.985876
560 -7.215301
355 13.712619
738 8.470271
Name: y, Length: 800, dtype: float64, 'treatment': 695 True
486 True
43 True
418 False
122 False
...
142 True
667 True
560 False
355 True
738 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0525
INFO:causalml: RMSE (Treatment): 0.7187
INFO:causalml: sMAPE (Control): 0.5312
INFO:causalml: sMAPE (Treatment): 0.1296
INFO:causalml: Gini (Control): 0.7540
INFO:causalml: Gini (Treatment): 0.9948
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1200
INFO:causalml: RMSE (Treatment): 0.7349
{'X': W4 W2 W1 W3 W0 X1 X0 \
640 -1.678246 1.438381 -0.155114 1.449979 -1.577508 -0.659106 0.118324
827 -0.123357 -0.188634 0.382711 -0.500811 1.739447 0.613970 0.748232
673 -0.941288 -0.348886 -1.817197 -0.426040 -0.139103 -0.649783 0.857110
284 -0.929719 0.896653 -0.016749 -0.051014 -2.466214 -0.577574 0.515098
295 -0.983868 1.058323 -1.353941 0.550563 -1.213079 0.165130 1.300355
.. ... ... ... ... ... ... ...
178 -1.287866 0.105602 0.132745 -0.181920 -0.151254 -1.038557 0.408551
723 -0.107996 1.393754 0.825508 0.735281 -0.586520 -0.348836 0.538970
394 -1.283395 1.760831 -0.728146 0.613214 0.534818 0.482541 0.497303
831 -1.230133 -0.572774 -0.868328 0.372532 -2.065409 -1.925431 1.802943
651 -0.647903 -0.439082 -1.170327 -0.407629 1.252680 -0.108644 0.227973
X0 X1
640 0.118324 -0.659106
827 0.748232 0.613970
673 0.857110 -0.649783
284 0.515098 -0.577574
295 1.300355 0.165130
.. ... ...
178 0.408551 -1.038557
723 0.538970 -0.348836
394 0.497303 0.482541
831 1.802943 -1.925431
651 0.227973 -0.108644
[800 rows x 9 columns], 'y': 640 3.839554
827 17.063845
673 -5.059295
284 2.864562
295 9.933260
...
178 6.014561
723 12.592456
394 12.331256
831 4.497600
651 10.451031
Name: y, Length: 800, dtype: float64, 'treatment': 640 True
827 True
673 False
284 True
295 True
...
178 True
723 True
394 True
831 True
651 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
235 -0.263945 0.606153 -2.132472 0.508581 -0.376937 0.208302 -1.639252
293 -2.019915 -0.918739 -1.767926 -1.403425 -0.740373 -1.576824 0.279021
505 -2.479285 0.847818 0.513598 -0.218587 0.793758 -1.587561 1.340198
816 -0.262987 0.921280 -0.389069 -0.883456 -2.158824 -1.767588 -0.312548
877 -0.359565 0.826991 -0.179359 -1.811258 1.418593 1.405163 -0.075609
.. ... ... ... ... ... ... ...
677 -0.926078 0.166307 -2.183101 1.988610 -0.286812 -1.952046 0.131363
925 -0.292250 -0.487899 -1.791678 1.743438 -1.451384 -1.451548 -0.034151
455 -0.472574 1.272672 -2.489234 0.483832 0.334740 -0.703027 1.687994
457 -1.376599 1.461089 -0.718660 1.781923 -2.802867 -1.477809 0.128276
665 -2.174730 0.248624 -0.092817 -0.715735 0.210519 -0.742166 -0.077510
X0 X1
235 -1.639252 0.208302
293 0.279021 -1.576824
505 1.340198 -1.587561
816 -0.312548 -1.767588
877 -0.075609 1.405163
.. ... ...
677 0.131363 -1.952046
925 -0.034151 -1.451548
455 1.687994 -0.703027
457 0.128276 -1.477809
665 -0.077510 -0.742166
[800 rows x 9 columns], 'y': 235 2.634861
293 -11.609205
505 8.711479
816 -0.020121
877 12.698322
...
677 6.044637
925 4.053751
455 15.390761
457 -8.028104
665 2.331887
Name: y, Length: 800, dtype: float64, 'treatment': 235 True
293 False
505 True
816 True
877 True
...
677 True
925 True
455 True
457 False
665 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: sMAPE (Control): 0.5751
INFO:causalml: sMAPE (Treatment): 0.1464
INFO:causalml: Gini (Control): 0.7218
INFO:causalml: Gini (Treatment): 0.9944
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0223
INFO:causalml: RMSE (Treatment): 0.7354
INFO:causalml: sMAPE (Control): 0.5407
INFO:causalml: sMAPE (Treatment): 0.1396
INFO:causalml: Gini (Control): 0.7417
INFO:causalml: Gini (Treatment): 0.9942
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0009
INFO:causalml: RMSE (Treatment): 0.7661
INFO:causalml: sMAPE (Control): 0.5483
INFO:causalml: sMAPE (Treatment): 0.1548
INFO:causalml: Gini (Control): 0.7414
INFO:causalml: Gini (Treatment): 0.9938
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
831 -1.230133 -0.572774 -0.868328 0.372532 -2.065409 -1.925431 1.802943
872 -0.675589 1.480966 0.633872 -1.812491 0.279114 -0.021202 0.937137
895 -0.459769 -0.017087 -0.860174 0.294297 0.061199 0.406711 0.845962
102 -0.418300 -0.557531 -1.665453 1.690287 0.196389 -1.122764 0.983299
686 -1.377233 -0.617476 -0.353271 2.000711 -1.831548 0.632213 0.262429
.. ... ... ... ... ... ... ...
412 -1.218461 2.898433 -0.737451 -1.217685 0.214579 -1.178889 0.280958
908 -0.171439 0.987004 1.139063 -0.049279 -1.404765 -0.687979 -0.500347
340 0.375616 2.217136 -0.666164 -0.970808 0.446217 -0.864206 1.763119
117 -2.185549 0.899307 -1.971894 -1.174155 -1.218568 -0.519142 1.033019
772 -1.631390 0.465915 -1.149010 1.590925 -0.376748 -1.413846 -0.295266
X0 X1
831 1.802943 -1.925431
872 0.937137 -0.021202
895 0.845962 0.406711
102 0.983299 -1.122764
686 0.262429 0.632213
.. ... ...
412 0.280958 -1.178889
908 -0.500347 -0.687979
340 1.763119 -0.864206
117 1.033019 -0.519142
772 -0.295266 -1.413846
[800 rows x 9 columns], 'y': 831 4.497600
872 11.901044
895 12.243751
102 12.024923
686 4.432389
...
412 7.872612
908 4.820482
340 18.529106
117 -11.180244
772 3.250030
Name: y, Length: 800, dtype: float64, 'treatment': 831 True
872 True
895 True
102 True
686 True
...
412 True
908 True
340 True
117 False
772 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
550 -0.456966 -0.476118 0.221099 -0.054011 0.708884 -1.962707 0.617111
776 -2.842646 -0.725526 -0.406744 -0.025141 -1.114379 0.538557 1.710464
208 -1.829170 0.787526 -0.881231 0.083780 -1.917817 -2.457417 0.754683
162 -1.388900 0.882150 -0.922345 0.504856 1.804151 -2.140192 2.410467
904 -1.109443 3.107200 -0.951024 -0.079768 1.948789 -1.132518 -0.890302
.. ... ... ... ... ... ... ...
184 -1.891342 1.936913 -1.618877 -1.053819 0.021617 -0.044179 -0.895357
960 0.148135 -0.231778 0.068080 -1.110248 -3.242602 -0.436255 1.334302
281 -1.135111 0.940750 -0.067170 -0.759354 1.096828 -1.630748 0.625826
84 -1.231904 0.946563 -0.520574 -1.241545 -1.073605 0.279123 0.201559
608 0.655518 2.888275 -1.833586 -1.459779 0.528316 1.313325 -0.562842
X0 X1
550 0.617111 -1.962707
776 1.710464 0.538557
208 0.754683 -2.457417
162 2.410467 -2.140192
904 -0.890302 -1.132518
.. ... ...
184 -0.895357 -0.044179
960 1.334302 -0.436255
281 0.625826 -1.630748
84 0.201559 0.279123
608 -0.562842 1.313325
[800 rows x 9 columns], 'y': 550 9.910321
776 -12.340879
208 -9.928296
162 17.934588
904 10.065464
...
184 1.132702
960 4.643805
281 9.917053
84 -7.210816
608 13.248344
Name: y, Length: 800, dtype: float64, 'treatment': 550 True
776 False
208 False
162 True
904 True
...
184 True
960 True
281 True
84 False
608 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
981 -1.677948 -1.622248 -1.171652 0.349836 -2.213015 1.101661 0.722546
252 -0.407608 -0.441935 -1.985984 1.444090 0.083796 -0.670731 0.259822
433 -1.782608 1.831915 -0.845111 0.759755 0.586684 -1.953787 0.353037
190 -1.284989 0.161720 -0.195371 0.142880 -1.766458 -1.817200 1.122913
380 -1.222122 -0.625482 -0.290597 0.559950 -0.992344 -0.491524 -0.854497
.. ... ... ... ... ... ... ...
383 -1.820459 0.011031 -1.003686 -0.301110 0.254573 -1.724935 0.863482
875 -2.411078 0.159398 0.119580 0.748787 -0.457547 0.313736 -0.560625
204 -1.495909 1.711115 -1.457953 0.493295 1.141122 0.318999 2.147456
635 -0.309105 1.995839 -1.442744 1.469303 -0.866598 1.284870 1.107725
18 -1.721390 0.991295 -1.008932 1.539819 -0.923055 -0.609885 -0.196033
X0 X1
981 0.722546 1.101661
252 0.259822 -0.670731
433 0.353037 -1.953787
190 1.122913 -1.817200
380 -0.854497 -0.491524
.. ... ...
383 0.863482 -1.724935
875 -0.560625 0.313736
204 2.147456 0.318999
635 1.107725 1.284870
18 -0.196033 -0.609885
[800 rows x 9 columns], 'y': 981 -12.765797
252 -0.786820
433 7.710126
190 3.713965
380 -0.053237
...
383 5.450868
875 1.205333
204 18.498160
635 15.613398
18 -5.046192
Name: y, Length: 800, dtype: float64, 'treatment': 981 False
252 False
433 True
190 True
380 True
...
383 True
875 True
204 True
635 True
18 False
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1101
INFO:causalml: RMSE (Treatment): 0.6556
INFO:causalml: sMAPE (Control): 0.5635
INFO:causalml: sMAPE (Treatment): 0.1410
INFO:causalml: Gini (Control): 0.7584
INFO:causalml: Gini (Treatment): 0.9964
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0568
INFO:causalml: RMSE (Treatment): 0.7481
INFO:causalml: sMAPE (Control): 0.5376
INFO:causalml: sMAPE (Treatment): 0.1475
INFO:causalml: Gini (Control): 0.7403
INFO:causalml: Gini (Treatment): 0.9942
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0602
INFO:causalml: RMSE (Treatment): 0.7217
INFO:causalml: sMAPE (Control): 0.5135
INFO:causalml: sMAPE (Treatment): 0.1480
{'X': W4 W2 W1 W3 W0 X1 X0 \
455 -0.472574 1.272672 -2.489234 0.483832 0.334740 -0.703027 1.687994
576 -0.258472 1.109831 0.044998 0.470214 0.134336 -1.293955 1.695302
236 -0.724433 0.998208 0.238311 -1.291449 -1.941921 0.913822 0.345125
687 0.178787 0.595348 -1.587125 1.513139 -0.245915 -0.379845 2.377876
192 -0.062807 0.029133 -0.344053 0.098793 -0.395855 -0.545119 0.774679
.. ... ... ... ... ... ... ...
65 -2.860295 0.491337 0.307032 0.402665 0.265118 -1.899636 -0.565288
983 -1.330248 1.247409 -0.571754 -0.359552 0.349860 -0.123228 -0.031874
47 0.154544 1.025493 -1.250332 -1.536762 -0.309219 -0.948781 1.324595
269 0.573973 -0.053532 -0.674589 -3.004365 1.021180 -0.146757 0.753673
422 -1.830252 0.894077 -0.267716 -0.367326 2.202751 -0.079619 0.119763
X0 X1
455 1.687994 -0.703027
576 1.695302 -1.293955
236 0.345125 0.913822
687 2.377876 -0.379845
192 0.774679 -0.545119
.. ... ...
65 -0.565288 -1.899636
983 -0.031874 -0.123228
47 1.324595 -0.948781
269 0.753673 -0.146757
422 0.119763 -0.079619
[800 rows x 9 columns], 'y': 455 15.390761
576 16.021321
236 4.765758
687 19.701253
192 10.887872
...
65 -0.860515
983 7.361146
47 11.849394
269 0.249321
422 11.141529
Name: y, Length: 800, dtype: float64, 'treatment': 455 True
576 True
236 True
687 True
192 True
...
65 True
983 True
47 True
269 False
422 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
143 -2.040739 1.654124 2.203868 1.326991 -0.370663 -1.606991 -0.643100
627 -1.523690 -0.192391 1.149614 -0.762336 -0.680800 -0.533576 -0.097514
890 -1.222633 2.135828 -0.734609 -0.488569 -0.600416 -0.479990 -0.460961
378 -1.938741 0.891352 0.002345 1.742060 -0.104084 -0.598398 0.006701
451 -0.565758 1.128663 -0.324990 -0.337899 -0.015063 0.346414 0.109342
.. ... ... ... ... ... ... ...
513 -0.719556 1.594492 -0.676926 2.386985 3.196747 -0.287512 0.591108
111 1.024268 0.556637 -0.514663 1.858435 -0.414872 -0.567619 0.793652
460 -0.386371 1.170936 0.655040 0.226403 -0.871820 -0.967792 1.052236
238 -0.166010 0.774921 -0.462897 -0.294769 -1.389314 -0.210174 2.431329
206 0.034341 -1.189055 -0.976649 0.149847 1.575362 -0.130203 2.269800
X0 X1
143 -0.643100 -1.606991
627 -0.097514 -0.533576
890 -0.460961 -0.479990
378 0.006701 -0.598398
451 0.109342 0.346414
.. ... ...
513 0.591108 -0.287512
111 0.793652 -0.567619
460 1.052236 -0.967792
238 2.431329 -0.210174
206 2.269800 -0.130203
[800 rows x 9 columns], 'y': 143 3.430961
627 2.219546
890 -3.809211
378 -2.856631
451 9.760052
...
513 22.411994
111 16.735009
460 11.172108
238 14.670040
206 20.680223
Name: y, Length: 800, dtype: float64, 'treatment': 143 True
627 True
890 False
378 False
451 True
...
513 True
111 True
460 True
238 True
206 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: Gini (Control): 0.7365
INFO:causalml: Gini (Treatment): 0.9949
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0490
INFO:causalml: RMSE (Treatment): 0.6879
INFO:causalml: sMAPE (Control): 0.5267
INFO:causalml: sMAPE (Treatment): 0.1384
INFO:causalml: Gini (Control): 0.7423
INFO:causalml: Gini (Treatment): 0.9953
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9082
INFO:causalml: RMSE (Treatment): 0.6356
INFO:causalml: sMAPE (Control): 0.5205
INFO:causalml: sMAPE (Treatment): 0.1334
INFO:causalml: Gini (Control): 0.7233
INFO:causalml: Gini (Treatment): 0.9956
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
808 -0.291951 1.043771 -0.571882 -0.537580 0.895934 -1.203433 1.200730
359 -1.250892 0.608337 -1.159236 1.196291 -2.448155 -1.418204 2.171817
755 -0.785170 -0.634127 0.249551 -0.613209 0.804813 -1.015528 1.452350
656 -1.273620 1.797036 2.092367 0.953316 1.197489 -0.625639 0.731893
464 -1.458938 1.066085 -0.038658 -0.458790 0.563506 0.649619 0.007999
.. ... ... ... ... ... ... ...
251 -2.083898 -0.553302 0.342455 1.195262 -0.140618 -0.475982 0.394482
8 -1.192098 0.543069 0.448059 1.496816 1.148883 -0.101334 0.352319
573 0.196341 0.991673 -0.825979 1.860407 -1.870355 -1.152153 -1.051394
726 -0.283535 0.621638 -0.999520 0.843142 1.790317 -0.030857 0.902776
192 -0.062807 0.029133 -0.344053 0.098793 -0.395855 -0.545119 0.774679
X0 X1
808 1.200730 -1.203433
359 2.171817 -1.418204
755 1.452350 -1.015528
656 0.731893 -0.625639
464 0.007999 0.649619
.. ... ...
251 0.394482 -0.475982
8 0.352319 -0.101334
573 -1.051394 -1.152153
726 0.902776 -0.030857
192 0.774679 -0.545119
[800 rows x 9 columns], 'y': 808 14.588358
359 7.556557
755 12.541520
656 15.632059
464 8.601975
...
251 5.436045
8 13.374297
573 3.364299
726 18.301691
192 10.887872
Name: y, Length: 800, dtype: float64, 'treatment': 808 True
359 True
755 True
656 True
464 True
...
251 True
8 True
573 True
726 True
192 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
121 1.534365 1.840154 -0.218035 -0.257249 -0.734629 -0.767329 -1.295119
589 -1.667998 -0.312881 -0.874289 -0.432761 -1.519063 0.481366 -0.232169
524 0.057014 0.649900 -0.364445 -0.578270 0.198899 -0.364881 2.339120
390 -2.802559 0.829055 -0.457778 0.755228 0.148033 -0.859578 0.281249
933 -0.934060 1.319778 0.959669 -0.733035 -1.291453 -0.773287 0.716901
.. ... ... ... ... ... ... ...
415 -0.927855 0.937062 0.139474 -0.230930 -1.822390 -1.141240 3.168139
351 -0.741034 0.497864 -0.483110 1.193559 -0.155819 -1.606313 0.005075
967 -1.386450 1.648145 -0.953457 1.161783 -0.494481 -3.161705 1.259562
403 -1.630763 2.405041 0.712370 0.529186 -2.230960 -0.416914 -1.593093
966 -2.809966 2.310766 0.855738 2.265568 -1.872551 -0.553294 2.176341
X0 X1
121 -1.295119 -0.767329
589 -0.232169 0.481366
524 2.339120 -0.364881
390 0.281249 -0.859578
933 0.716901 -0.773287
.. ... ...
415 3.168139 -1.141240
351 0.005075 -1.606313
967 1.259562 -3.161705
403 -1.593093 -0.416914
966 2.176341 -0.553294
[800 rows x 9 columns], 'y': 121 8.541463
589 -10.258505
524 18.575304
390 3.725711
933 6.639250
...
415 -6.705046
351 7.214058
967 -2.657495
403 -3.265557
966 9.876889
Name: y, Length: 800, dtype: float64, 'treatment': 121 True
589 False
524 True
390 True
933 True
...
415 False
351 True
967 False
403 True
966 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
190 -1.284989 0.161720 -0.195371 0.142880 -1.766458 -1.817200 1.122913
314 -0.846455 -0.409130 -2.466592 0.522989 -0.052613 -2.655562 1.377086
42 0.672800 0.403843 -0.485776 1.240526 1.063470 0.870394 0.561993
242 -1.740568 1.485447 -2.312406 0.386711 1.155020 -1.148651 -1.499194
268 -0.008387 -0.345640 0.297517 0.932659 -0.233741 -0.957095 -1.559348
.. ... ... ... ... ... ... ...
731 -0.792085 2.126007 -1.140046 0.187479 -0.140220 -0.338651 1.396477
689 -2.243570 1.275778 -1.424485 -2.440678 -1.906424 -2.373430 -0.198568
366 -1.403735 1.313386 1.988391 -0.578266 1.442075 1.501325 0.150474
179 -1.297348 2.058718 -1.459938 0.264849 0.264363 -1.481147 1.305092
237 -0.843070 3.028032 -0.964293 0.319940 -2.199262 -0.535469 -1.279896
X0 X1
190 1.122913 -1.817200
314 1.377086 -2.655562
42 0.561993 0.870394
242 -1.499194 -1.148651
268 -1.559348 -0.957095
.. ... ...
731 1.396477 -0.338651
689 -0.198568 -2.373430
366 0.150474 1.501325
179 1.305092 -1.481147
237 -1.279896 -0.535469
[800 rows x 9 columns], 'y': 190 3.713965
314 -3.811119
42 19.574715
242 1.894728
268 3.465358
...
731 13.912472
689 -13.994008
366 13.879918
179 11.624002
237 -0.336643
Name: y, Length: 800, dtype: float64, 'treatment': 190 True
314 False
42 True
242 True
268 True
...
731 True
689 False
366 True
179 True
237 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9942
INFO:causalml: RMSE (Treatment): 0.7756
INFO:causalml: sMAPE (Control): 0.5198
INFO:causalml: sMAPE (Treatment): 0.1502
INFO:causalml: Gini (Control): 0.7338
INFO:causalml: Gini (Treatment): 0.9935
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9713
INFO:causalml: RMSE (Treatment): 0.6769
INFO:causalml: sMAPE (Control): 0.5471
INFO:causalml: sMAPE (Treatment): 0.1401
INFO:causalml: Gini (Control): 0.7299
INFO:causalml: Gini (Treatment): 0.9951
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0612
INFO:causalml: RMSE (Treatment): 0.7682
INFO:causalml: sMAPE (Control): 0.5225
INFO:causalml: sMAPE (Treatment): 0.1526
INFO:causalml: Gini (Control): 0.7297
INFO:causalml: Gini (Treatment): 0.9939
{'X': W4 W2 W1 W3 W0 X1 X0 \
146 -0.706790 -0.165058 -1.348082 0.313898 0.513408 -0.992231 -0.989312
573 0.196341 0.991673 -0.825979 1.860407 -1.870355 -1.152153 -1.051394
314 -0.846455 -0.409130 -2.466592 0.522989 -0.052613 -2.655562 1.377086
370 -1.330248 0.617371 -1.086532 0.939956 -1.523047 -0.029272 0.894390
228 -0.479531 0.804877 -0.334062 0.447143 0.576800 -0.277841 -0.766331
.. ... ... ... ... ... ... ...
169 -0.409555 -0.737805 -3.028388 0.817463 -0.393057 -0.845180 1.640679
111 1.024268 0.556637 -0.514663 1.858435 -0.414872 -0.567619 0.793652
29 -1.026446 0.591365 0.862837 0.817784 -0.689067 -0.759426 -0.807769
948 0.137207 0.807432 0.012233 -0.321381 -1.727172 -0.265376 1.037937
525 -1.141040 0.446646 -0.843669 0.808363 0.327886 -0.739442 0.486219
X0 X1
146 -0.989312 -0.992231
573 -1.051394 -1.152153
314 1.377086 -2.655562
370 0.894390 -0.029272
228 -0.766331 -0.277841
.. ... ...
169 1.640679 -0.845180
111 0.793652 -0.567619
29 -0.807769 -0.759426
948 1.037937 -0.265376
525 0.486219 -0.739442
[800 rows x 9 columns], 'y': 146 3.922772
573 3.364299
314 -3.811119
370 6.533270
228 8.255998
...
169 -3.755154
111 16.735009
29 3.429318
948 9.814477
525 9.406466
Name: y, Length: 800, dtype: float64, 'treatment': 146 True
573 True
314 False
370 True
228 True
...
169 False
111 True
29 True
948 True
525 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
834 -0.921188 0.601325 -1.805151 0.607381 0.656701 0.552350 0.119174
421 -2.057703 0.279791 -0.650186 -0.436779 -0.108370 0.907991 -1.865056
63 -2.000224 0.352174 0.394109 -0.450750 0.766047 -0.466814 2.799461
407 -1.290075 0.523591 -0.037169 -0.751136 0.489787 1.070899 0.626482
216 -1.185130 1.723057 -2.436984 -0.947938 -0.797647 -1.237892 0.020300
.. ... ... ... ... ... ... ...
560 -0.591932 0.047587 -1.357618 -1.008455 -1.341175 0.311592 1.261070
7 0.174130 1.506210 -1.549595 0.782615 -1.878625 -0.626575 1.176085
370 -1.330248 0.617371 -1.086532 0.939956 -1.523047 -0.029272 0.894390
994 0.160794 0.460056 0.691403 0.008455 -0.133095 -1.589448 1.180637
962 -0.058529 0.632542 -0.738886 -0.663994 -0.868324 -2.555294 -0.708468
X0 X1
834 0.119174 0.552350
421 -1.865056 0.907991
63 2.799461 -0.466814
407 0.626482 1.070899
216 0.020300 -1.237892
.. ... ...
560 1.261070 0.311592
7 1.176085 -0.626575
370 0.894390 -0.029272
994 1.180637 -1.589448
962 -0.708468 -2.555294
[800 rows x 9 columns], 'y': 834 10.523346
421 -2.608507
63 15.814566
407 10.716455
216 2.376140
...
560 -7.215301
7 -2.646268
370 6.533270
994 13.409683
962 1.353868
Name: y, Length: 800, dtype: float64, 'treatment': 834 True
421 True
63 True
407 True
216 True
...
560 False
7 False
370 True
994 True
962 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.1340
INFO:causalml: RMSE (Treatment): 0.7060
INFO:causalml: sMAPE (Control): 0.5439
INFO:causalml: sMAPE (Treatment): 0.1519
INFO:causalml: Gini (Control): 0.7274
INFO:causalml: Gini (Treatment): 0.9950
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
{'X': W4 W2 W1 W3 W0 X1 X0 \
629 -1.087554 1.775480 1.171119 0.254408 0.110085 -0.901117 0.490717
168 0.435794 1.361508 -0.020057 -1.105804 -0.948502 -0.816422 1.539983
637 -1.283359 0.832725 0.002037 -1.432698 -2.375726 -1.559718 1.057731
565 0.489147 1.219821 -1.070019 0.305099 0.624808 -0.830622 1.045480
610 -0.711808 1.595194 0.094204 0.005941 -1.302585 -0.669101 1.030998
.. ... ... ... ... ... ... ...
897 -0.501089 -1.031997 -1.334448 -0.012652 -0.451207 -0.315850 -0.369898
62 -0.387319 0.363055 -3.887119 -0.957211 -0.720283 -1.195020 -0.053329
527 -1.914933 -0.160798 -2.443913 0.459466 0.752528 -0.032713 0.745998
941 -0.858300 2.689664 0.060630 -0.800292 -0.649474 -0.542851 0.680252
391 -0.307159 1.106719 1.338069 -1.242240 0.718523 0.202760 0.500101
X0 X1
629 0.490717 -0.901117
168 1.539983 -0.816422
637 1.057731 -1.559718
565 1.045480 -0.830622
610 1.030998 -0.669101
.. ... ...
897 -0.369898 -0.315850
62 -0.053329 -1.195020
527 0.745998 -0.032713
941 0.680252 -0.542851
391 0.500101 0.202760
[800 rows x 9 columns], 'y': 629 10.711793
168 13.539036
637 -10.850731
565 17.014565
610 9.248446
...
897 -4.566144
62 -5.979631
527 8.043131
941 9.630585
391 13.502571
Name: y, Length: 800, dtype: float64, 'treatment': 629 True
168 True
637 False
565 True
610 True
...
897 False
62 False
527 True
941 True
391 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
384 -0.952465 0.527441 -1.232497 -0.135736 -0.788245 0.164010 0.849034
209 -0.133713 0.654669 -1.106384 -0.108285 1.071118 -1.245543 -0.793213
339 -0.174635 1.102320 -0.538718 1.353400 -2.411045 -0.088519 -0.223676
952 -0.623857 0.509187 -1.613917 -0.527539 -0.021147 -1.638291 1.771485
545 -1.156909 1.955408 0.619625 1.010345 0.520459 0.423056 0.779032
.. ... ... ... ... ... ... ...
839 -0.294596 0.983148 -0.666509 0.796590 0.072181 -0.815520 0.188710
10 0.846619 2.980613 0.205696 2.969570 0.858587 -1.222764 1.147817
734 -2.534543 1.297053 -0.227526 -0.605377 -1.703765 -0.280342 0.415044
941 -0.858300 2.689664 0.060630 -0.800292 -0.649474 -0.542851 0.680252
350 -0.426754 1.054619 1.005346 0.254238 -0.790041 -1.571358 0.573671
X0 X1
384 0.849034 0.164010
209 -0.793213 -1.245543
339 -0.223676 -0.088519
952 1.771485 -1.638291
545 0.779032 0.423056
.. ... ...
839 0.188710 -0.815520
10 1.147817 -1.222764
734 0.415044 -0.280342
941 0.680252 -0.542851
350 0.573671 -1.571358
[800 rows x 9 columns], 'y': 384 -5.168611
209 8.004465
339 4.815990
952 -2.868485
545 15.065277
...
839 10.718157
10 24.500212
734 -0.213830
941 9.630585
350 8.901755
Name: y, Length: 800, dtype: float64, 'treatment': 384 False
209 True
339 True
952 False
545 True
...
839 True
10 True
734 True
941 True
350 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: RMSE (Control): 3.0399
INFO:causalml: RMSE (Treatment): 0.7060
INFO:causalml: sMAPE (Control): 0.5135
INFO:causalml: sMAPE (Treatment): 0.1434
INFO:causalml: Gini (Control): 0.7466
INFO:causalml: Gini (Treatment): 0.9947
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9668
INFO:causalml: RMSE (Treatment): 0.6953
INFO:causalml: sMAPE (Control): 0.5294
INFO:causalml: sMAPE (Treatment): 0.1350
INFO:causalml: Gini (Control): 0.7468
INFO:causalml: Gini (Treatment): 0.9948
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0586
INFO:causalml: RMSE (Treatment): 0.6825
INFO:causalml: sMAPE (Control): 0.5465
INFO:causalml: sMAPE (Treatment): 0.1460
INFO:causalml: Gini (Control): 0.7248
INFO:causalml: Gini (Treatment): 0.9953
{'X': W4 W2 W1 W3 W0 X1 X0 \
907 -0.596246 0.342098 0.422666 1.205834 -0.189522 -0.157053 1.625369
110 -1.807733 2.432036 -0.421479 1.445365 -0.460025 0.868047 0.873665
282 -0.070319 -0.099650 0.457073 1.593983 -1.547777 -1.467975 0.444530
35 -0.572119 -0.757998 -0.095580 -0.836271 0.268984 -1.592530 -0.137505
562 -1.449613 1.071250 -1.609878 0.729917 1.114471 1.063556 -0.186103
.. ... ... ... ... ... ... ...
825 -1.429357 -0.888809 0.582119 -0.687709 -0.446310 -0.158307 0.811902
596 -1.135855 0.142313 0.627392 0.540314 0.120423 -1.359658 2.273243
293 -2.019915 -0.918739 -1.767926 -1.403425 -0.740373 -1.576824 0.279021
641 -2.239311 2.194117 -0.353902 0.360330 0.632691 -1.221853 -0.388297
516 -0.316795 2.424823 0.020510 -0.536910 0.983380 -0.880608 1.127091
X0 X1
907 1.625369 -0.157053
110 0.873665 0.868047
282 0.444530 -1.467975
35 -0.137505 -1.592530
562 -0.186103 1.063556
.. ... ...
825 0.811902 -0.158307
596 2.273243 -1.359658
293 0.279021 -1.576824
641 -0.388297 -1.221853
516 1.127091 -0.880608
[800 rows x 9 columns], 'y': 907 15.569400
110 11.934711
282 7.672536
35 -2.892738
562 10.482337
...
825 5.892887
596 14.773593
293 -11.609205
641 4.862547
516 16.717229
Name: y, Length: 800, dtype: float64, 'treatment': 907 True
110 True
282 True
35 False
562 True
...
825 True
596 True
293 False
641 True
516 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
503 -2.066140 2.033010 -1.559405 0.352297 0.418520 -0.333911 1.084480
527 -1.914933 -0.160798 -2.443913 0.459466 0.752528 -0.032713 0.745998
65 -2.860295 0.491337 0.307032 0.402665 0.265118 -1.899636 -0.565288
143 -2.040739 1.654124 2.203868 1.326991 -0.370663 -1.606991 -0.643100
808 -0.291951 1.043771 -0.571882 -0.537580 0.895934 -1.203433 1.200730
.. ... ... ... ... ... ... ...
351 -0.741034 0.497864 -0.483110 1.193559 -0.155819 -1.606313 0.005075
494 -1.309272 0.323194 -1.405781 0.614937 1.179140 0.560715 -0.047731
579 -0.385689 0.379145 0.280441 0.467014 -1.190009 -0.877053 -0.634747
220 0.757100 1.090061 -0.251709 0.571761 -1.084509 -1.752894 0.512210
336 -3.093855 1.469971 0.367279 1.174817 -0.729766 -2.114001 0.885400
X0 X1
503 1.084480 -0.333911
527 0.745998 -0.032713
65 -0.565288 -1.899636
143 -0.643100 -1.606991
808 1.200730 -1.203433
.. ... ...
351 0.005075 -1.606313
494 -0.047731 0.560715
579 -0.634747 -0.877053
220 0.512210 -1.752894
336 0.885400 -2.114001
[800 rows x 9 columns], 'y': 503 -3.163402
527 8.043131
65 -0.860515
143 3.430961
808 14.588358
...
351 7.214058
494 10.082742
579 3.518524
220 10.878908
336 2.926169
Name: y, Length: 800, dtype: float64, 'treatment': 503 False
527 True
65 True
143 True
808 True
...
351 True
494 True
579 True
220 True
336 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0257
INFO:causalml: RMSE (Treatment): 0.6446
INFO:causalml: sMAPE (Control): 0.5649
INFO:causalml: sMAPE (Treatment): 0.1381
INFO:causalml: Gini (Control): 0.7243
INFO:causalml: Gini (Treatment): 0.9956
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
625 -1.336550 0.261883 0.557248 -0.069210 1.161863 -0.761143 1.075224
760 -1.539521 0.393619 0.922067 -2.071477 -0.370860 -1.118111 1.021422
78 -1.150653 0.133818 0.632773 1.970008 -2.371912 -0.758077 0.049079
49 -0.982952 2.225363 -1.526931 -0.694241 0.029243 -0.455032 0.234971
75 -0.681840 -0.860902 -0.003540 0.004867 -0.711607 1.445133 2.210988
.. ... ... ... ... ... ... ...
7 0.174130 1.506210 -1.549595 0.782615 -1.878625 -0.626575 1.176085
710 -0.753746 2.934628 -1.147550 -0.196935 -0.921997 -0.625230 -0.292340
943 -2.252890 0.804815 -1.189588 0.399429 -1.924218 -1.450234 0.482038
271 -1.683731 -0.490214 1.077274 1.927335 -0.447638 1.027982 -0.317068
891 -0.294883 -0.574886 -1.010901 1.587116 0.836384 0.457966 2.071495
X0 X1
625 1.075224 -0.761143
760 1.021422 -1.118111
78 0.049079 -0.758077
49 0.234971 -0.455032
75 2.210988 1.445133
.. ... ...
7 1.176085 -0.626575
710 -0.292340 -0.625230
943 0.482038 -1.450234
271 -0.317068 1.027982
891 2.071495 0.457966
[800 rows x 9 columns], 'y': 625 12.619755
760 -7.109575
78 2.567970
49 8.274390
75 -4.842126
...
7 -2.646268
710 5.904376
943 -10.951371
271 6.385709
891 20.166272
Name: y, Length: 800, dtype: float64, 'treatment': 625 True
760 False
78 True
49 True
75 False
...
7 False
710 True
943 False
271 True
891 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
906 -1.727409 0.768134 0.127817 2.012317 -0.001440 0.690172 0.662514
98 -0.724707 -0.167508 -2.200046 1.316365 -0.652669 1.877820 0.372580
983 -1.330248 1.247409 -0.571754 -0.359552 0.349860 -0.123228 -0.031874
497 -1.333797 1.734853 -0.414480 0.677529 -1.691099 -1.330015 0.657088
583 -0.820218 -0.945137 -1.568877 -0.082810 0.614237 -0.346996 0.919443
.. ... ... ... ... ... ... ...
894 -0.029186 0.537780 -2.631535 0.408287 -0.885739 -0.202335 1.614458
780 -0.483565 0.853663 1.381569 -0.538695 -0.040407 -0.585683 0.004936
117 -2.185549 0.899307 -1.971894 -1.174155 -1.218568 -0.519142 1.033019
848 -1.892578 1.453947 -2.287147 0.205164 -0.295408 -1.312249 0.506585
258 -1.776837 0.805692 -1.001388 0.520858 0.798608 -1.470144 0.534863
X0 X1
906 0.662514 0.690172
98 0.372580 1.877820
983 -0.031874 -0.123228
497 0.657088 -1.330015
583 0.919443 -0.346996
.. ... ...
894 1.614458 -0.202335
780 0.004936 -0.585683
117 1.033019 -0.519142
848 0.506585 -1.312249
258 0.534863 -1.470144
[800 rows x 9 columns], 'y': 906 11.554534
98 -3.658929
983 7.361146
497 -5.843257
583 -2.819370
...
894 -2.776312
780 8.820757
117 -11.180244
848 -5.747920
258 8.016723
Name: y, Length: 800, dtype: float64, 'treatment': 906 True
98 False
983 True
497 False
583 False
...
894 False
780 True
117 False
848 False
258 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0735
INFO:causalml: RMSE (Treatment): 0.7186
INFO:causalml: sMAPE (Control): 0.5432
INFO:causalml: sMAPE (Treatment): 0.1394
INFO:causalml: Gini (Control): 0.7331
INFO:causalml: Gini (Treatment): 0.9948
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0731
INFO:causalml: RMSE (Treatment): 0.7347
INFO:causalml: sMAPE (Control): 0.5509
INFO:causalml: sMAPE (Treatment): 0.1434
INFO:causalml: Gini (Control): 0.7232
INFO:causalml: Gini (Treatment): 0.9945
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0618
INFO:causalml: RMSE (Treatment): 0.7741
INFO:causalml: sMAPE (Control): 0.5257
INFO:causalml: sMAPE (Treatment): 0.1482
INFO:causalml: Gini (Control): 0.7235
INFO:causalml: Gini (Treatment): 0.9937
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
{'X': W4 W2 W1 W3 W0 X1 X0 \
379 -2.642522 2.168664 -0.282198 -0.922232 -0.027263 -1.608540 0.585088
91 -1.781143 1.133039 -0.366381 -1.016497 0.753451 -0.648109 0.902865
237 -0.843070 3.028032 -0.964293 0.319940 -2.199262 -0.535469 -1.279896
521 -1.235550 2.140683 -2.152255 0.310299 -1.837627 -0.705293 -0.465131
958 -0.495343 0.847053 -0.028871 -0.718100 -0.871586 -0.630299 -0.132512
.. ... ... ... ... ... ... ...
834 -0.921188 0.601325 -1.805151 0.607381 0.656701 0.552350 0.119174
323 -1.225390 1.130518 -1.096882 -0.350487 -0.604044 0.001088 0.390490
127 -1.184442 1.633850 -0.489806 0.806896 -0.654125 -0.324203 -1.297638
591 -1.762898 1.105254 1.394248 0.278984 -0.431230 -0.144092 -0.668399
768 -0.693216 0.942545 -0.176337 -1.216868 -1.459316 0.118780 0.014068
X0 X1
379 0.585088 -1.608540
91 0.902865 -0.648109
237 -1.279896 -0.535469
521 -0.465131 -0.705293
958 -0.132512 -0.630299
.. ... ...
834 0.119174 0.552350
323 0.390490 0.001088
127 -1.297638 -0.324203
591 -0.668399 -0.144092
768 0.014068 0.118780
[800 rows x 9 columns], 'y': 379 -6.731177
91 9.048832
237 -0.336643
521 0.541061
958 5.051010
...
834 10.523346
323 6.435152
127 2.218793
591 3.407731
768 3.776833
Name: y, Length: 800, dtype: float64, 'treatment': 379 False
91 True
237 True
521 True
958 True
...
834 True
323 True
127 True
591 True
768 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
66 -0.074892 -0.353977 0.148845 -0.275548 -0.150470 0.507088 -0.258207
411 -0.546985 0.632225 0.177670 1.152931 -1.341671 -1.043610 0.915882
714 0.484495 0.681690 -1.070190 1.380717 0.003125 -0.471048 -0.511469
697 -0.735466 0.746269 -1.122905 0.464823 -0.708806 -2.491421 -0.071736
359 -1.250892 0.608337 -1.159236 1.196291 -2.448155 -1.418204 2.171817
.. ... ... ... ... ... ... ...
883 -1.053935 -0.020818 -0.218070 -0.163484 -1.436398 0.888213 0.560956
677 -0.926078 0.166307 -2.183101 1.988610 -0.286812 -1.952046 0.131363
336 -3.093855 1.469971 0.367279 1.174817 -0.729766 -2.114001 0.885400
74 -0.996694 0.160173 -2.637286 -2.023282 1.303478 -1.990375 1.207325
14 -2.078772 1.196831 1.691383 -0.112157 -0.733879 -1.146159 0.723966
X0 X1
66 -0.258207 0.507088
411 0.915882 -1.043610
714 -0.511469 -0.471048
697 -0.071736 -2.491421
359 2.171817 -1.418204
.. ... ...
883 0.560956 0.888213
677 0.131363 -1.952046
336 0.885400 -2.114001
74 1.207325 -1.990375
14 0.723966 -1.146159
[800 rows x 9 columns], 'y': 66 8.421138
411 9.164325
714 10.878215
697 3.459264
359 7.556557
...
883 5.901248
677 6.044637
336 2.926169
74 8.688916
14 5.340331
Name: y, Length: 800, dtype: float64, 'treatment': 66 True
411 True
714 True
697 True
359 True
...
883 True
677 True
336 True
74 True
14 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0681
INFO:causalml: RMSE (Treatment): 0.7303
INFO:causalml: sMAPE (Control): 0.5512
INFO:causalml: sMAPE (Treatment): 0.1448
INFO:causalml: Gini (Control): 0.7432
INFO:causalml: Gini (Treatment): 0.9948
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9306
INFO:causalml: RMSE (Treatment): 0.6556
INFO:causalml: sMAPE (Control): 0.5388
INFO:causalml: sMAPE (Treatment): 0.1402
INFO:causalml: Gini (Control): 0.7361
INFO:causalml: Gini (Treatment): 0.9956
{'X': W4 W2 W1 W3 W0 X1 X0 \
900 -1.528877 0.854363 -0.020892 -0.125090 1.283825 0.408115 -0.168281
446 0.595650 0.365987 -0.116439 0.995399 0.154264 1.021106 -2.210810
699 -1.175823 0.350680 0.033996 0.794509 -0.475092 -2.358432 0.259472
70 -0.652798 1.861460 -2.041953 -1.200137 0.846213 -0.817692 1.894073
933 -0.934060 1.319778 0.959669 -0.733035 -1.291453 -0.773287 0.716901
.. ... ... ... ... ... ... ...
578 -0.125015 -0.484719 -0.554158 -0.644919 -0.352951 -0.169403 0.807828
365 -0.079718 -0.263842 0.747338 0.929554 0.426811 -1.590757 1.366447
765 -0.608825 1.705784 0.327906 -0.288734 -0.692755 1.172959 0.656402
607 -0.713550 -0.806284 -0.339457 -0.279553 -0.477920 -0.690686 -0.221325
95 -0.058838 4.762058 0.823520 0.244461 -0.340888 -2.698332 -0.572900
X0 X1
900 -0.168281 0.408115
446 -2.210810 1.021106
699 0.259472 -2.358432
70 1.894073 -0.817692
933 0.716901 -0.773287
.. ... ...
578 0.807828 -0.169403
365 1.366447 -1.590757
765 0.656402 1.172959
607 -0.221325 -0.690686
95 -0.572900 -2.698332
[800 rows x 9 columns], 'y': 900 9.560536
446 6.907692
699 4.759513
70 15.668385
933 6.639250
...
578 -2.946371
365 15.195618
765 11.910646
607 3.571733
95 9.600613
Name: y, Length: 800, dtype: float64, 'treatment': 900 True
446 True
699 True
70 True
933 True
...
578 False
365 True
765 True
607 True
95 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
65 -2.860295 0.491337 0.307032 0.402665 0.265118 -1.899636 -0.565288
670 -0.325648 -0.215383 -0.051446 0.066123 0.154725 -0.186235 -0.145738
829 -1.396963 -0.080609 -2.047189 -0.910429 -1.164537 -1.251936 -0.347075
684 -2.035070 2.267671 0.292658 0.472886 1.087179 -0.826693 0.637336
959 -1.282991 1.134722 -1.881201 0.830477 0.965414 1.414359 -1.140110
.. ... ... ... ... ... ... ...
355 -0.326494 2.433717 0.080853 1.915810 -0.164674 0.466589 -0.152236
35 -0.572119 -0.757998 -0.095580 -0.836271 0.268984 -1.592530 -0.137505
314 -0.846455 -0.409130 -2.466592 0.522989 -0.052613 -2.655562 1.377086
383 -1.820459 0.011031 -1.003686 -0.301110 0.254573 -1.724935 0.863482
104 -1.505922 2.182535 -1.410477 1.379506 -1.351655 -1.104962 -1.837318
X0 X1
65 -0.565288 -1.899636
670 -0.145738 -0.186235
829 -0.347075 -1.251936
684 0.637336 -0.826693
959 -1.140110 1.414359
.. ... ...
355 -0.152236 0.466589
35 -0.137505 -1.592530
314 1.377086 -2.655562
383 0.863482 -1.724935
104 -1.837318 -1.104962
[800 rows x 9 columns], 'y': 65 -0.860515
670 8.500958
829 -9.531238
684 11.451222
959 7.562645
...
355 13.712619
35 -2.892738
314 -3.811119
383 5.450868
104 -2.668188
Name: y, Length: 800, dtype: float64, 'treatment': 65 True
670 True
829 False
684 True
959 True
...
355 True
35 False
314 False
383 True
104 True
Name: v0, Length: 800, dtype: bool}
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0845
INFO:causalml: RMSE (Treatment): 0.7984
INFO:causalml: sMAPE (Control): 0.5368
INFO:causalml: sMAPE (Treatment): 0.1555
INFO:causalml: Gini (Control): 0.7325
INFO:causalml: Gini (Treatment): 0.9935
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
{'X': W4 W2 W1 W3 W0 X1 X0 \
498 0.922735 1.290530 0.397031 0.589139 -0.007310 0.062392 0.668905
461 -1.364660 -1.842826 0.241333 0.373454 -0.367738 0.860921 0.880397
213 -0.961749 1.214165 -0.354784 1.375875 -1.675979 -0.633450 0.130199
280 -0.924446 -0.495998 -1.067446 -0.475160 -0.560881 -1.593906 1.057462
872 -0.675589 1.480966 0.633872 -1.812491 0.279114 -0.021202 0.937137
.. ... ... ... ... ... ... ...
583 -0.820218 -0.945137 -1.568877 -0.082810 0.614237 -0.346996 0.919443
692 -1.425142 -0.090768 -2.394217 0.281658 -1.069567 -1.236345 -1.514344
824 -2.113843 0.954802 -0.116011 0.031653 0.087367 -0.731206 1.268051
319 -0.246796 1.042340 0.473929 -1.882334 -1.252649 -0.129804 -2.165228
968 -0.626450 0.610291 -0.847638 0.077436 0.480144 -1.839511 0.703036
X0 X1
498 0.668905 0.062392
461 0.880397 0.860921
213 0.130199 -0.633450
280 1.057462 -1.593906
872 0.937137 -0.021202
.. ... ...
583 0.919443 -0.346996
692 -1.514344 -1.236345
824 1.268051 -0.731206
319 -2.165228 -0.129804
968 0.703036 -1.839511
[800 rows x 9 columns], 'y': 498 17.581110
461 -6.434741
213 5.306177
280 5.994137
872 11.901044
...
583 -2.819370
692 -8.079772
824 8.772335
319 -2.951778
968 10.038489
Name: y, Length: 800, dtype: float64, 'treatment': 498 True
461 False
213 True
280 True
872 True
...
583 False
692 False
824 True
319 True
968 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
566 -0.600353 1.068704 -1.045374 0.760096 -0.036793 -1.155525 0.884924
726 -0.283535 0.621638 -0.999520 0.843142 1.790317 -0.030857 0.902776
272 -3.198219 0.554460 0.179309 2.032221 -0.401181 -1.528464 1.415503
356 -1.087973 1.063452 -0.582690 -0.391019 -0.717769 0.567377 0.968256
836 -0.185908 0.768699 -0.919715 -1.103215 -1.382410 -0.970128 -0.209856
.. ... ... ... ... ... ... ...
644 0.074273 -0.584974 -0.371922 0.791947 -2.236616 0.159478 1.327895
803 0.354704 1.494915 0.648519 0.097670 -0.697552 0.274267 0.820103
186 -0.858757 3.823995 0.218085 1.742811 -1.001666 -0.271821 1.026534
359 -1.250892 0.608337 -1.159236 1.196291 -2.448155 -1.418204 2.171817
333 -0.903943 1.303046 -0.373566 0.414038 0.837871 -0.085945 0.009761
X0 X1
566 0.884924 -1.155525
726 0.902776 -0.030857
272 1.415503 -1.528464
356 0.968256 0.567377
836 -0.209856 -0.970128
.. ... ...
644 1.327895 0.159478
803 0.820103 0.274267
186 1.026534 -0.271821
359 2.171817 -1.418204
333 0.009761 -0.085945
[800 rows x 9 columns], 'y': 566 11.504404
726 18.301691
272 -7.247960
356 -4.713297
836 2.849093
...
644 9.476615
803 14.674849
186 14.738530
359 7.556557
333 11.223406
Name: y, Length: 800, dtype: float64, 'treatment': 566 True
726 True
272 False
356 False
836 True
...
644 True
803 True
186 True
359 True
333 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: RMSE (Control): 2.9304
INFO:causalml: RMSE (Treatment): 0.6669
INFO:causalml: sMAPE (Control): 0.5375
INFO:causalml: sMAPE (Treatment): 0.1398
INFO:causalml: Gini (Control): 0.7641
INFO:causalml: Gini (Treatment): 0.9957
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9838
INFO:causalml: RMSE (Treatment): 0.6644
INFO:causalml: sMAPE (Control): 0.5334
INFO:causalml: sMAPE (Treatment): 0.1405
INFO:causalml: Gini (Control): 0.7088
INFO:causalml: Gini (Treatment): 0.9953
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0108
INFO:causalml: RMSE (Treatment): 0.6659
INFO:causalml: sMAPE (Control): 0.5188
INFO:causalml: sMAPE (Treatment): 0.1441
INFO:causalml: Gini (Control): 0.7486
{'X': W4 W2 W1 W3 W0 X1 X0 \
580 -0.197310 2.008508 -0.347956 0.087102 0.032457 -2.205103 -0.149105
22 0.539595 1.318356 0.301499 3.369823 0.047571 1.204919 1.920096
87 -1.405182 1.380866 -2.273438 1.029827 0.528251 -0.012064 -0.114884
522 0.488747 0.260763 -0.084712 2.012467 0.136177 -0.514404 1.454348
844 -0.961302 1.353622 0.111644 1.015867 -2.161583 0.255054 0.858101
.. ... ... ... ... ... ... ...
364 -1.078590 1.563574 1.504080 -0.486241 -1.540033 -0.435152 0.956055
643 -0.837543 2.690282 -0.956587 1.519004 -3.148478 1.188059 1.128666
692 -1.425142 -0.090768 -2.394217 0.281658 -1.069567 -1.236345 -1.514344
582 -1.856578 1.519025 -0.354817 1.777607 -0.103456 -0.540906 0.894554
535 -0.498853 -0.438894 -0.539694 0.645447 -0.372969 -1.473858 2.897329
X0 X1
580 -0.149105 -2.205103
22 1.920096 1.204919
87 -0.114884 -0.012064
522 1.454348 -0.514404
844 0.858101 0.255054
.. ... ...
364 0.956055 -0.435152
643 1.128666 1.188059
692 -1.514344 -1.236345
582 0.894554 -0.540906
535 2.897329 -1.473858
[800 rows x 9 columns], 'y': 580 8.433110
22 25.918390
87 8.347375
522 19.196033
844 -5.710027
...
364 7.693260
643 9.118838
692 -8.079772
582 10.549091
535 16.319324
Name: y, Length: 800, dtype: float64, 'treatment': 580 True
22 True
87 True
522 True
844 False
...
364 True
643 True
692 False
582 True
535 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
532 -1.066751 1.332414 -0.908307 -0.420243 -0.283136 -1.052984 0.072030
995 -2.515948 0.660984 -1.169142 -2.272146 -1.210642 -0.284190 -0.127452
816 -0.262987 0.921280 -0.389069 -0.883456 -2.158824 -1.767588 -0.312548
335 -1.086530 1.994553 0.585116 -0.719867 -2.473053 1.434212 0.722229
533 -1.983985 2.080045 -0.821934 -0.160942 -2.473228 -1.513175 -1.154217
.. ... ... ... ... ... ... ...
3 -2.330312 1.552707 -1.004874 1.042000 0.342380 -1.363540 1.515319
303 -1.789335 1.176506 0.016001 1.199059 0.834791 -0.485443 0.705215
998 -0.107884 0.866378 -1.644002 -0.046340 -1.318515 0.888535 1.662692
119 -0.412019 -1.707939 0.133539 0.898397 -0.839980 -0.812084 1.197569
613 -1.417773 -0.153505 0.258187 0.222832 -1.176441 -0.629369 1.426766
X0 X1
532 0.072030 -1.052984
995 -0.127452 -0.284190
816 -0.312548 -1.767588
335 0.722229 1.434212
533 -1.154217 -1.513175
.. ... ...
3 1.515319 -1.363540
303 0.705215 -0.485443
998 1.662692 0.888535
119 1.197569 -0.812084
613 1.426766 -0.629369
[800 rows x 9 columns], 'y': 532 5.559274
995 -13.283829
816 -0.020121
335 6.324474
533 -6.739186
...
3 10.343818
303 11.687300
998 13.321122
119 9.223485
613 7.422234
Name: y, Length: 800, dtype: float64, 'treatment': 532 True
995 False
816 True
335 True
533 True
...
3 True
303 True
998 True
119 True
613 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: Gini (Treatment): 0.9954
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0193
INFO:causalml: RMSE (Treatment): 0.7014
INFO:causalml: sMAPE (Control): 0.5388
INFO:causalml: sMAPE (Treatment): 0.1490
INFO:causalml: Gini (Control): 0.7211
INFO:causalml: Gini (Treatment): 0.9949
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
{'X': W4 W2 W1 W3 W0 X1 X0 \
199 -0.887451 -0.781149 -0.243760 -0.813839 -0.018489 -1.809168 1.396317
249 -0.735623 0.814306 -1.693160 1.847391 -0.791449 -0.970486 -1.068904
75 -0.681840 -0.860902 -0.003540 0.004867 -0.711607 1.445133 2.210988
629 -1.087554 1.775480 1.171119 0.254408 0.110085 -0.901117 0.490717
719 -1.646363 0.269526 -1.677945 1.596705 -1.646524 0.649971 -0.577936
.. ... ... ... ... ... ... ...
503 -2.066140 2.033010 -1.559405 0.352297 0.418520 -0.333911 1.084480
123 -0.755355 1.402171 -0.488604 1.421476 -2.454651 1.055428 -1.229143
425 -0.547299 1.010457 0.355019 0.509403 -0.299352 -1.751637 1.623652
153 -0.787940 1.279546 -1.034601 0.763826 -0.810432 -1.157911 -0.536019
180 -0.772968 0.508917 -1.168432 -0.936875 1.844232 -0.008911 0.298550
X0 X1
199 1.396317 -1.809168
249 -1.068904 -0.970486
75 2.210988 1.445133
629 0.490717 -0.901117
719 -0.577936 0.649971
.. ... ...
503 1.084480 -0.333911
123 -1.229143 1.055428
425 1.623652 -1.751637
153 -0.536019 -1.157911
180 0.298550 -0.008911
[800 rows x 9 columns], 'y': 199 8.221818
249 -2.008335
75 -4.842126
629 10.711793
719 0.828056
...
503 -3.163402
123 1.168663
425 13.323890
153 3.964156
180 12.418586
Name: y, Length: 800, dtype: float64, 'treatment': 199 True
249 False
75 False
629 True
719 True
...
503 False
123 True
425 True
153 True
180 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 3.0336
INFO:causalml: RMSE (Treatment): 0.7137
INFO:causalml: sMAPE (Control): 0.5254
INFO:causalml: sMAPE (Treatment): 0.1430
INFO:causalml: Gini (Control): 0.7298
INFO:causalml: Gini (Treatment): 0.9946
INFO:dowhy.causal_estimator:INFO: Using CausalML Estimator
INFO:dowhy.causal_estimator:b: y~v0+W4+W2+W1+W3+W0+X1+X0
INFO:causalml:Error metrics for group True
INFO:causalml: RMSE (Control): 2.9814
INFO:causalml: RMSE (Treatment): 0.6610
INFO:causalml: sMAPE (Control): 0.5544
INFO:causalml: sMAPE (Treatment): 0.1489
INFO:causalml: Gini (Control): 0.6981
{'X': W4 W2 W1 W3 W0 X1 X0 \
772 -1.631390 0.465915 -1.149010 1.590925 -0.376748 -1.413846 -0.295266
75 -0.681840 -0.860902 -0.003540 0.004867 -0.711607 1.445133 2.210988
897 -0.501089 -1.031997 -1.334448 -0.012652 -0.451207 -0.315850 -0.369898
197 -1.572938 0.609204 -2.470786 2.406344 -0.928691 -0.722715 1.007663
650 -1.089175 0.031213 -2.627317 1.213359 0.277555 -1.571450 0.129622
.. ... ... ... ... ... ... ...
112 0.060647 0.642094 1.051395 1.234630 -0.601046 0.340267 2.262831
818 -2.294772 1.081263 -0.110948 0.240523 -2.452061 -0.676310 1.024324
646 -0.626251 1.021268 0.186793 1.691995 -1.534219 -0.559809 0.720521
720 -0.178107 0.545358 -1.188979 -2.009287 -1.712708 0.183073 2.293672
593 -0.197920 1.086551 -0.777233 -1.511006 -0.413144 0.015110 0.344828
X0 X1
772 -0.295266 -1.413846
75 2.210988 1.445133
897 -0.369898 -0.315850
197 1.007663 -0.722715
650 0.129622 -1.571450
.. ... ...
112 2.262831 0.340267
818 1.024324 -0.676310
646 0.720521 -0.559809
720 2.293672 0.183073
593 0.344828 0.015110
[800 rows x 9 columns], 'y': 772 3.250030
75 -4.842126
897 -4.566144
197 -4.810420
650 -2.393578
...
112 20.053296
818 -11.770683
646 9.399353
720 11.018665
593 8.505994
Name: y, Length: 800, dtype: float64, 'treatment': 772 True
75 False
897 False
197 False
650 False
...
112 True
818 False
646 True
720 True
593 True
Name: v0, Length: 800, dtype: bool}
{'X': W4 W2 W1 W3 W0 X1 X0 \
14 -2.078772 1.196831 1.691383 -0.112157 -0.733879 -1.146159 0.723966
309 -0.539594 2.000693 1.298256 0.596046 -2.741050 -0.539698 0.178355
185 -0.265206 0.795345 -1.677192 -0.822158 0.585555 -0.521756 -0.615447
212 -0.919538 1.656161 0.432204 0.358171 -0.174663 -1.124815 1.438214
467 -1.523227 1.571773 0.543944 0.010920 1.160325 -0.031949 0.427831
.. ... ... ... ... ... ... ...
475 -1.371406 -1.789706 -1.298206 -1.611236 -0.709442 -0.195347 2.724470
248 -0.322096 0.956739 -1.722687 0.445099 1.192956 -0.951015 -0.322611
867 -1.435952 0.855195 0.715461 -0.153104 -1.408541 -0.723836 0.896810
458 -1.265210 -0.125523 -0.769733 1.467806 -1.007910 0.213974 0.547473
711 0.099864 0.069601 -0.148899 0.008564 -0.642494 -0.050277 0.035692
X0 X1
14 0.723966 -1.146159
309 0.178355 -0.539698
185 -0.615447 -0.521756
212 1.438214 -1.124815
467 0.427831 -0.031949
.. ... ...
475 2.724470 -0.195347
248 -0.322611 -0.951015
867 0.896810 -0.723836
458 0.547473 0.213974
711 0.035692 -0.050277
[800 rows x 9 columns], 'y': 14 5.340331
309 4.869483
185 -0.302411
212 13.226200
467 12.156180
...
475 -10.586297
248 10.511960
867 5.611633
458 7.125670
711 8.687897
Name: y, Length: 800, dtype: float64, 'treatment': 14 True
309 True
185 False
212 True
467 True
...
475 False
248 True
867 True
458 True
711 True
Name: v0, Length: 800, dtype: bool}
INFO:causalml: Gini (Treatment): 0.9955
INFO:dowhy.causal_refuters.data_subset_refuter:Making use of Bootstrap as we have more than 100 examples.
Note: The greater the number of examples, the more accurate are the confidence estimates
Refutation Values
[14]:
refuter_count = 1
if inspect_refutations is True:
for refutation in refutation_list:
print("####### Refutation {}#######################################################################################".format(refuter_count))
print("*** Class Name ***")
print()
print(refutation.refutation_type)
print()
print(refutation)
print("########################################################################################################")
print()
refuter_count += 1
####### Refutation 1#######################################################################################
*** Class Name ***
Refute: Bootstrap Sample Dataset
Refute: Bootstrap Sample Dataset
Estimated effect:12.89367255934708
New effect:12.374411274559812
p value:0.28
########################################################################################################
####### Refutation 2#######################################################################################
*** Class Name ***
Refute: Use a subset of data
Refute: Use a subset of data
Estimated effect:12.89367255934708
New effect:12.616442370428834
p value:0.31000000000000005
########################################################################################################
####### Refutation 3#######################################################################################
*** Class Name ***
Refute: Bootstrap Sample Dataset
Refute: Bootstrap Sample Dataset
Estimated effect:12.075122341243496
New effect:12.111367745920434
p value:0.44
########################################################################################################
####### Refutation 4#######################################################################################
*** Class Name ***
Refute: Use a subset of data
Refute: Use a subset of data
Estimated effect:12.075122341243496
New effect:12.063766705476722
p value:0.47
########################################################################################################
####### Refutation 5#######################################################################################
*** Class Name ***
Refute: Bootstrap Sample Dataset
Refute: Bootstrap Sample Dataset
Estimated effect:[11.29290641]
New effect:11.336360019179892
p value:[0.44]
########################################################################################################
####### Refutation 6#######################################################################################
*** Class Name ***
Refute: Use a subset of data
Refute: Use a subset of data
Estimated effect:[11.29290641]
New effect:11.283369137714823
p value:[0.47]
########################################################################################################