import inspect
import numpy as np
import pandas as pd
from dowhy.causal_estimator import CausalEstimate
from dowhy.causal_estimator import CausalEstimator
from importlib import import_module
import econml
[docs]class Econml(CausalEstimator):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.logger.info("INFO: Using EconML Estimator")
self.identifier_method = self._target_estimand.identifier_method
self._observed_common_causes_names = self._target_estimand.backdoor_variables.copy()
# Checking if effect modifiers are a subset of common causes
x_subsetof_w = True
unique_effect_modifier_names = []
for em_name in self._effect_modifier_names:
if em_name not in self._observed_common_causes_names:
x_subsetof_w = False
unique_effect_modifier_names.append(em_name)
if not x_subsetof_w:
self.logger.warn("Effect modifiers are not a subset of common causes. For efficiency in estimation, EconML will consider all effect modifiers as common causes too.")
self._observed_common_causes_names.extend(unique_effect_modifier_names)
if self._observed_common_causes_names:
self._observed_common_causes = self._data[self._observed_common_causes_names]
self._observed_common_causes = pd.get_dummies(self._observed_common_causes, drop_first=True)
else:
self._observed_common_causes = None
self.logger.debug("Back-door variables used:" +
",".join(self._observed_common_causes_names))
# Instrumental variables names, if present
self._instrumental_variable_names = self._target_estimand.instrumental_variables
if self._instrumental_variable_names:
self._instrumental_variables = self._data[self._instrumental_variable_names]
self._instrumental_variables = pd.get_dummies(self._instrumental_variables, drop_first=True)
else:
self._instrumental_variables = None
estimator_class = self._get_econml_class_object(self._econml_methodname)
self.estimator = estimator_class(**self.method_params["init_params"])
self.symbolic_estimator = self.construct_symbolic_estimator(self._target_estimand)
self.logger.info(self.symbolic_estimator)
def _get_econml_class_object(self, module_method_name, *args, **kwargs):
# from https://www.bnmetrics.com/blog/factory-pattern-in-python3-simple-version
try:
(module_name, _, class_name) = module_method_name.rpartition(".")
estimator_module = import_module(module_name)
estimator_class = getattr(estimator_module, class_name)
except (AttributeError, AssertionError, ImportError):
raise ImportError('Error loading {}.{}. Double-check the method name and ensure that all econml dependencies are installed.'.format(module_name, class_name))
return estimator_class
def _estimate_effect(self):
n_samples = self._treatment.shape[0]
X = None # Effect modifiers
W = None # common causes/ confounders
Z = None # Instruments
Y = np.array(self._outcome)
T = np.array(self._treatment)
if self._effect_modifier_names:
X = np.reshape(np.array(self._effect_modifiers), (n_samples, self._effect_modifiers.shape[1]))
if self._observed_common_causes_names:
W = np.reshape(np.array(self._observed_common_causes), (n_samples, self._observed_common_causes.shape[1]))
if self._instrumental_variable_names:
Z = np.array(self._instrumental_variables)
named_data_args = {'Y': Y, 'T': T, 'X': X, 'W': W, 'Z': Z}
# Calling the econml estimator's fit method
estimator_named_args = inspect.getfullargspec(
inspect.unwrap(self.estimator.fit)
)[0]
estimator_data_args = {
arg: named_data_args[arg] for arg in named_data_args.keys() if arg in estimator_named_args
}
self.estimator.fit(**estimator_data_args, **self.method_params["fit_params"])
X_test = X
n_target_units = n_samples
if X is not None:
if type(self._target_units) is pd.DataFrame:
X_test = self._target_units
elif callable(self._target_units):
filtered_rows = self._data.where(self._target_units)
boolean_criterion = np.array(filtered_rows.notnull().iloc[:,0])
X_test = X[boolean_criterion]
n_target_units = X_test.shape[0]
# Changing shape to a list for a singleton value
if type(self._control_value) is not list:
self._control_value = [self._control_value]
if type(self._treatment_value) is not list:
self._treatment_value = [self._treatment_value]
T0_test = np.repeat([self._control_value], n_target_units, axis=0)
T1_test = np.repeat([self._treatment_value], n_target_units, axis=0)
est = self.estimator.effect(X_test, T0=T0_test, T1=T1_test)
ate = np.mean(est)
est_interval = None
if self._confidence_intervals:
est_interval = self.estimator.effect_interval(X_test, T0=T0_test, T1=T1_test)
estimate = CausalEstimate(estimate=ate,
target_estimand=self._target_estimand,
realized_estimand_expr=self.symbolic_estimator,
cate_estimates=est,
effect_intervals=est_interval,
_estimator_object=self.estimator)
return estimate
def _do(self, x):
raise NotImplementedError
[docs] def construct_symbolic_estimator(self, estimand):
expr = "b: " + ", ".join(estimand.outcome_variable) + "~"
# TODO -- fix: we are actually conditioning on positive treatment (d=1)
var_list = estimand.treatment_variable + self._observed_common_causes_names
expr += "+".join(var_list)
expr += " | " + ",".join(self._effect_modifier_names)
return expr